Orientalmotor

Motorized Linear Actuators

EZ limo

EZSII Series SPV Series EZCII Series EZA Series PWAII Series

Advancing Positioning Applications

Oriental Motor's Motorized Actuators

EZ limo

Oriental Motor offers a broad lineup of motorized actuators, designed for greater ease and higher performance in positioning applications.
The drive motor for all models uses a closed loop $\boldsymbol{Q}_{\text {Step }}$ stepping motor. The common controller incorporates features that let the user effortlessly set all functions needed to operate a motorized actuator. Other accessories, such as the teaching pendant, editing software and cables, are common to all EZ limo models.

INTRODUCTION

Overview
Product Specifications

EZSIISeries
The high－accuracy and compact body was made possible by adopting a ball screw and guide frame structure．The compact design facilitates installation and wiring to your system for added convenience．

SPV Series
P． $2 \sim$ P． 9 P． $10 \sim P .13$

P． $14 \sim$ P． 17

PWAIISeries
This motorized cylinder，featuring a ball screw combined with a gear mechanism，is perfect for applications with push motion and pressurized positioning．

CONTROLLER
Common Controller
ACCESSORIES
Teaching pendant，data editing software，etc．
SELECTION CALCULATIONS
Selecting a motorized actuator

A Wide Lineup of Motorized Actuators EZ limo

EZSII Series

EZSII Series (Using $\boldsymbol{Q}_{\text {STEP }}$)

Drive Method: Ball screw

Maximum Stroke 850 mm
Maximum Speed $800 \mathrm{~mm} / \mathrm{s}$

Maximum
Transportable Mass \quad Horizontal $60 \mathrm{~kg} /$ Vertical 30 kg
Repetitive Positioning Accuracy $\pm 0.02 \mathrm{~mm}$
The above figures are representative values. For details, refer to the product information page.

A compact, lightweight linear slide using an LM Guide ${ }^{\circledR}$ as a frame.
Because an accurate LM Guide ${ }^{\circledR}$ is used as a reference when the linear slide is installed, an excellent traveling parallelism of 0.03 mm or below can be achieved.

SPV Series

SPV Series (Using $\boldsymbol{\alpha}_{\text {Step }}$)

Drive Method: Belt

Maximum Stroke 1500 mm
Maximum Speed $1500 \mathrm{~mm} / \mathrm{s}$
Maximum
Transportable Mass \quad Horizontal 20 kg

$$
\text { Repetitive Positioning Accuracy } \pm 0.05 \mathrm{~mm}
$$

The above figures are representative values. For details, refer to the product information page.

Employing an aluminum frame structure and a belt-and-pulley mechanism, the SPV6 and SPV8 support long strokes up to 1000 mm and 1500 mm , respectively.
All models are capable of high-speed operation, achieving a maximum speed of $1500 \mathrm{~mm} / \mathrm{s}$.

EZCII Series (Using $\boldsymbol{\alpha}_{\text {STEP }}$)

Drive Method: Ball screw

Maximum Stroke 300 mm
Maximum speed $600 \mathrm{~mm} / \mathrm{s}$

Maximum
Transportable Mass*

Repetitive Positioning Accuracy $\pm 0.02 \mathrm{~mm}$
*The value when an external guide is used.
-The above figures are representative values. For details, refer to the product information page.

The ball screw is rotated by an $\boldsymbol{Q}_{\text {STEP }}$ motor to position even heavy loads with high accuracy. Integrating a motor with a linear motion mechanism, this type of actuator is ideal for applications where the load is pushed or pulled.

EZA Series (Using $\alpha_{\text {STEP }}$)
Drive Method: Ball screw
Maximum Stroke 300 mm
Maximum Speed $600 \mathrm{~mm} / \mathrm{s}$

$\underset{\text { Transportable Mass }}{\text { Maximum }}$ Horizontal $\mathrm{g}_{\mathrm{kg}}{ }^{*} /$ Vertical 30 kg

Repetitive Positioning Accuracy $\pm 0.02 \mathrm{~mm}$
*Maximum horizontal transportable mass is 60 kg when an external guide is used.
*Maximum horizontal transportable mass varies with the moment.
-The above figures are representative values. For details, refer to the product information page.
With a built-in LM Guide ${ }^{\circledR}$, the EZA Series offers improved performance and greater ease of use while maintaining a compact size. There is no need for a guide mechanism, such as an external guide, requiring cumbersome installation.

-LM Guide is registered trademark of THK Co., Ltd.

PWAII Series

PWAII Series (Using $\boldsymbol{\alpha}_{\text {STEP }}$)
Drive Method: Ball screw + Gear

Maximum Stroke 100 mm
Maximum Speed $200 \mathrm{~mm} / \mathrm{s}$
Maximum Push Force 5000 N

Repetitive Positioning Accuracy $\pm 0.02 \mathrm{~mm}$
-The above figures are representative values. For details, refer to the product information page.

An $\boldsymbol{Q}_{\text {STEP }}$ motor is used to turn the gears, thus driving the ball screw back and forth.
With the folded motor configuration, the PWAII Series provides high thrust force while maintaining a compact size. It's perfect for applications with push motion and pressurized positioning.

Combining All Functions Needed to Operate a Linear Actuator in Positioning Operations

Each function is common to EZSII Series, SPV Series, EZCII Series, EZA Series and PWAII Series.

This controller lets you operate all the functions required of a motorized linear actuator easily.

Common Controller

A removable controller key is used that stores the parameters for the various models. This means that the same controller can be used with the EZS II
Series, SPV Series, EZC II Series, EZA
Series and PWA II Series.

Three Types of Controllers
The controllers are available for three power supply voltages: 24 VDC, singlephase 100-115 VAC and single-phase 200-230 VAC.
Select the controller type that suits your equipment.

Incremental Mode/

Absolute Mode

Specifically, the controller can be used as an absolute unit by connecting an accessory battery (sold separately).

Controller Mode/ Driver Mode

The EZ limo can be combined with your existing controller to serve as a driver controlling the linear slide by pulse input.

Teaching Function

Positioning data can be set in one of three methods, as specified below.

(2)Direct teaching

Move the table or the rod to the target position manually, and store the achieved position as positioning data

(3)Remote teaching

Move the table or the rod to the target position using a teaching pendant or data editing software, and store the achieved position as positioning data.

Up to 63 Points of Positioning Data

Up to 63 points of positioning data can be set in simple steps. The positioning operation can be performed in one of two ways: using the selective positioning method, where desired data is selected and executed by the signals from the host controller; or the sequential positioning method, in which all data is executed sequentially when a start signal is input.

Area Output Function

A signal is output when the linear slide table or the cylinder rod enters a set area arbitrarily set along the stroke. One set area can be set.

Push-Motion Function

(Only for EZCII/EZA/PWAII Series Cylinders)

The rod can be held in a state of being pushed against the load or similar object, as with an air cylinder. The force used to push the load (push force) can be changed.

Linked Operation

Up to four operation data can be linked, thereby allowing the actuator to change speeds without stopping.

-Data with the same operation direction can be linked.

Choice of Two Return to Home Methods

-Sensorless Return to Home
 (Only for EZS II/EZC II/EZA Series)

Return to home is performed without the use of home sensors.

The home position and return to home speed (maximum of $100 \mathrm{~mm} / \mathrm{s}$) can be adjusted, and the direction of return to home can also be changed.
-Return to Home Using Sensors
Return to home is performed using home sensors.
With SPV Series, sensors are included in the product.

Output of Current Position and Error Code

The current position, error code and other data can be output to an external device.

Extensive Adjustment Functions

- Acceleration/Deceleration Four patterns of acceleration/deceleration setting are possible according to your operating conditions. Acceleration and deceleration can be set separately.

-Speed Filter

Use this filter to suppress disturbances during starting and stopping or to reduce vibration during low-speed operation. With the speed filter function you can control the motor to minimize speed fluctuations even when switching the speed rapidly between operation commands.

The set value can be adjusted digitally (over a range of 1 to 100). Increasing the set value makes the movement smoother while decreasing the synchronism with the command.

Easy Editing of Positioning Data

A teaching pendant and data editing software are available.

Choose the appropriate accessory based on the required functions.

Functions of Teaching Pendant (EZT 1) and Data Editing Software (EZED2)

The table below summarizes the functions available with the teaching pendant (EZT1) and data editing software (EZED2). Choose the appropriate tool based on the required functions.

Function	Item	
	Teaching Pendant (Model: EZT 1)	Data Editing Software (Model: EZED2)
Cable Length	5 m	$5 \mathrm{m*1}$
Display	LCD 17 characters $\times 4$ lines	PC screen
Emergency Stop Button	\bigcirc	\times
Operation Data Setting	\bigcirc	\bigcirc
Parameter Setting	\bigcirc	\bigcirc
Teaching Function (Direct/Remote)	\bigcirc	\bigcirc
Operation Data Monitoring	\bigcirc	\bigcirc
I/O \& Alarm History Monitoring	\bigcirc	\bigcirc
Waveform Monitoring	\times	\bigcirc
Test Operation	\bigcirc	\bigcirc
Data Copy	\times	\bigcirc
Printing Function	\times	O*2

*1 PC interface cable (included) is used.
$* 2$ The printing function is not available on computers running Windows ${ }^{\circledR} 98$, Me.

Teaching Pendant (Sold separately) (Model: EZT 1)

All functions required for operation and adjustment, including setting of positioning data, test operation and I/O monitoring, are provided.
-The dialogue-type user interface ensures easy operation. All you need is to enter values in the necessary fields.

- No dedicated power supply is necessary. Simply connect the cable to the controller.

Data Editing Software (Sold separately) (Model: EZED2)

-All functions required for operation and adjustment, including setting of positioning data, test operation and I/O monitoring, are provided.

- Running on any Windows computer, the software is a graphic navigation tool that guides you through various operations in easy steps. This userfriendly feature makes this an ideal accessory for editing large volumes of data.
- You can also access waveform monitoring, data copy and other features not available on the teaching pendant.

Data Editing

Test Operation

Waveform Monitoring

Status Monitoring

Product Specifications of Motorized Linear Slides EZ limo

-For details of product specifications, check the pages where each product is listed.
*For the product specifications of EZS II Series, please refer to the relevant "ORIENTAL MOTOR GENERAL CATALOG 2009/2010" pages.

Product Specifications of Motorized Cylinders EZ limo

-For details of product specifications, check the pages where each relevant product is listed.

[^0]

RoHS RoHS-Compliant

Motorized Linear Slides

EZ limo EZS II Series

The structure of this motorized linear slide has been optimized to achieve greater convenience and performance in positioning applications.
The compact design facilitates simpler installation and wiring to your system.

Actual Size ezs3Dols-A Stroke 150 mm Without Electromagnetic Brake

Quick Positioning

The EZSII Series uses the $\boldsymbol{\alpha}_{\text {STEP }}$ stepping motor characterized by its high response and ability to eliminate missteps. By fully utilizing the performance of the $\alpha_{\text {STEP }}$, the EZSII Series is capable of performing quick positioning operations.

Large Transportable Mass

The EZSII Series can perform positioning at high speeds, supporting large transportable mass.
-Maximum Transportable Mass: Horizontal $\mathbf{6 0}$ kg Vertical 30 kg EZS6 (Lead 6 mm)
-Maximum Speed: $\mathbf{8 0 0} \mathbf{~ m m / s}$
EZS3, EZS4, EZS6
(Lead 12 mm , single-phase 100-115 VAC/200-230 VAC input)

The total length of linear slide is shorter for every stroke or model, which enables space-saving design of your equipment.

Stroke $+209.5 \mathrm{~mm}=$ Total length of linear slide

Since the space outside the linear slide's operating range is minimized, the overall system size can be reduced.

Common Controller

A removable controller key is used that stores the parameters of various models.
This means that the same controller can be used with all models and series.

Incremental Mode and Absolute Mode in One Model

One controller supports both the incremental and absolute functions. Specifically, the controller can be used as an absolute unit by connecting an accessory battery (sold separately).

Three Types of Controllers

The controllers are available for three power supply voltages: 24 VDC, single-phase 100-115 VAC and single-phase 200-230 VAC.
Select the controller type that suits your equipment.

RoHS RoHS-Compliant

The EZSII Series conforms to the RoHS Directive that prohibits the use of six chemical substances including lead and cadmium.

Actual Size ezssool 5 -A Stroke 150 mm Without Electromgnentic Brake

Easy Stroke Selection

A desired stroke can be selected in 50 mm increments over the following ranges:
Ezs3, Ez54: 50 to 700 mm
Ez56: 50 to 850 mm

Maintenance-Free for Long-Term Performance

The ball screw employs the QZim lubrication system, while the LM Guide® uses the Ball Retainere to retain the coupled rolling elements. The ball screw and LM Guide® use AFF grease with reduced dustraising property, which is designed for use in clean rooms.

Wear Prevention

A simple roller mechanism is used to prevent the stainless sheet from wearing quickly. The roller structure suppresses dust generation caused by rubbing of the stainless sheet and the table.

Traveling Parallelism 0.03 mm

A traveling parallelism of 0.03 mm is achieved by the direct installation of the guide.

Vibration Suppression Function

The newly developed control method achieves low vibration even at the speed range where large vibration occurs normally.

Sensorless High-Speed Return to Home Operation at Speeds up to $100 \mathrm{~mm} / \mathrm{s}$

We have developed a dedicated stop buffer to allow the sensorless return to home operation at a maximum speed of $100 \mathrm{~mm} / \mathrm{s}$. Once the motor detects table contact with the stop buffer, it will perform the return to home operation at $6 \mathrm{~mm} / \mathrm{s}$.

Easy Wiring

The linear slide and controller are connected via a single cable, and the wiring distance can be extended to a maximum of 20 m .
The cable is fitted with a connector for quick connection.
*Maximum of 10 m for 24 VDC products

The cable can be placed in a flexible conduit or cable gland with an inner diameter of $\phi 16.5 \mathrm{~mm}$.

Motorized Linear Slides

EZ limo SPV Series

The SPV Series employs an $\alpha_{\text {STEP }}$ stepping motor and controller system for tuning-free, misstep-free operation.
The belt driven actuator allows the load to be transferred at high-speed and long strokes.

Features

- Adopting a Closed Loop $\boldsymbol{Q}_{\text {STEP }}$ Stepping Motor, This Linear Slide Eliminates Misstep and Hunting, While Attaining High-Speed and High-Response Operation.
The linear slide has no hunting problem upon stopping. The vibration and noise levels have been lowered by employing advanced technology that produces smoothness comparable to a microstep driver.

- Dual Axes Combination Can be Easily Implemented

The X and Y axes can be installed easily using the PAB3 dual axes mounting bracket as an accessory. It is also possible to directly assemble the linear slides of both axes.
(Accessories PAB3 \rightarrow Page 79)
Only products with a motor at the top can be installed as the Y -axis.
Products with a motor at the bottom cannot be installed as the Y-axis.

Using a Mounting Bracket

- Drivable at a Maximum Speed of $1500 \mathrm{~mm} / \mathrm{s}$ and Acceleration of $5 \mathrm{~m} / \mathrm{s}^{2}$ (Single-phase 100-115 VAC/ 200-230 VAC)
The SPV Series boasts a maximum speed of $1500 \mathrm{~mm} / \mathrm{s}$. It also achieves an acceleration of $5 \mathrm{~m} / \mathrm{s}^{2}$ when carrying a load corresponding to the maximum transportable mass in the horizontal direction.

[^1]
- Long Stroke

The belt drive supports long strokes up to 1500 mm (the 1500 mm stroke is supported by the SPV8 only).
Easy Wiring between the Linear Slide and Controller The linear slide and controller are connected via a single cable, and the wiring distance can be extended to a maximum of 20 m . The cable is fitted with a connector for quick connection.

* Maximum of 10 m for 24 VDC products

The cable can be placed in a flexible conduit or cable gland with an inner diameter of $\phi 16.5 \mathrm{~mm}$.* * Except for the single-phase 200-230 VAC product

Safety Standards and CE Marking
(Only for 24 VDC product)

Power Supply Voltage	Product	CE Marking
24 VDC	Linear Slide	EMC Directives
	Controller	

- The EMC value changes according to the wiring and layout. Therefore, the final EMC level must be checked with the linear slide/controller incorporated in the user's equipment. If you require EMC data of linear slides or controllers, please contact the nearest Oriental Motor sales office.

- Machinery Directive (98/37/EC)

The linear slides, controllers and teaching pendants are designed and manufactured for use in general industrial equipment as an internal component, and therefore need not comply with the Machinery Directive. However, each product has been evaluated under the following standards to ensure proper operation:
EN ISO 12100-1, EN ISO 12100-2, EN 1050, EN 60204-1

\diamond Emergency Stop Function

The emergency stop circuit in the teaching pendant or controller is designed in accordance with the requirements of Category 1 under EN 954-1.
Refer to page 76 for a connection example that conforms to Stop Category 0 (non-controlled stop) under EN 60204-1.

\diamond Emergency Stop Circuit

The customer must provide an appropriate emergency stop circuit by conducting risk assessment based on your system.

General Specifications of Motor ©General specifications of controller \rightarrow Page 65

This is the value after rated operation under normal ambient temperature and humidity.

24 VDC

Item	Specification
Insulation Resistance	$100 \mathrm{M} \Omega$ or more when 500 VDC megger is applied between the following places: \cdot Motor case - Motor/Sensor windings
Dielectric Strength	Sufficient to withstand the following for 1 minute: $\cdot-$ Motor case - Motor/Sensor windings$\quad 0.5 \mathrm{kVAC} 50 \mathrm{~Hz}$
Ambient Temperature	$0 \sim+40^{\circ} \mathrm{C}$ (non-freezing)
Ambient Humidity	85% or less (non-condensing)
Note: Do not measure insulation resistance or perform the dielectric strength test while the linear slide and controller are connected.	

Single-Phase 100-115 VAC/Single-Phase 200-230 VAC

Item	Specification	
Insulation Resistance	$100 \mathrm{M} \Omega$ or more when 500 VDC megger is applied between the following places: \cdot Motor case - Motor/Sensor windings	
Dielectric Strength	Sufficient to withstand the following for 1 minute: \cdot Motor case - Motor/Sensor windings 1.5 kVAC 50 Hz	
Ambient Temperature	$0 \sim+40^{\circ} \mathrm{C}$ (non-freezing)	
Ambient Humidity	85% or less (non-condensing)	
Note: Do not measure insulation resistance or perform the dielectric strength test while the linear slide and controller are connected.		

System Configuration

- Controller Mode

No.	Product Name	Overview	Page
(1)	Motor Cables	This dedicated cable connects the linear slide and linear motion controller (1 to 20 m). Be sure to purchase this cable.	74
(2)	Teaching Pendant	Various data can be set and operated at your fingertips. The cable length is 5 m .	75
(3)	Data Editing Software	Various data can be set and edited on a personal computer. A dedicated communication cable is included (5 m).	75
(4)	Dual Axes Mounting Bracket	Biaxial configuration can be easily implemented using the mounting bracket.	79
(5)	Cable Holders	This cable holder can be used to protect and guide cables in two or three axes combinations.	78
(6)	Sensor Extension Cables	Cable for connecting the linear motion controller and sensors ($1 \mathrm{~m}, 2 \mathrm{~m}$).	74
(7)	Connector - Terminal Block Conversion Unit	Set of terminal block and cable for connecting the linear motion controller and sensors (1 m).	76
(8)	I/O Cables	Cable for connecting the linear motion controller and programmable controller (1 m, 2 m).	77
(9)	Connector - Terminal Block Conversion Unit	Set of terminal block and cable for connecting the linear motion controller and programmable controller (1 m).	76
(10)	Battery Set	Required for use in the absolute mode.	77
(11)	DIN Rail Mounting Plate	Use this when installing the linear motion controller to a DIN rail.	78

- Example of System Configuration
(Sold separately) (Sold separately)

SPV Series	$\begin{aligned} & \text { Motor Cable } \\ & (2 \mathrm{~m}) \end{aligned}$	Teaching Pendant	I/O Gable (1 m)	Sensor Extension Cable (2 m)
SPV6K010U-A	CC020ES-3	EZT 1	CC36D1-1	CC20D2-1

-The system configuration shown above is an example. Other combinations are available.

- Driver Mode

An example of a single-axis system configuration with the EMP400 Series controller.

No.	Product Name	Overview	Page
(1)	Motor Cables	This dedicated cable connects the linear slide and linear motion controller (1 to 20 m). Be sure to purchase this cable.	74
(2)	Controller	This controller gives commands needed to drive the linear slide.	$*$
(3)	Dual Axes Mounting Bracket	Biaxial configuration can be easily implemented using the mounting bracket.	79
(4)	Cable Holders	This cable holder can be used to protect and guide cables in dual or three axes combinations.	78
(5)	Driver - Sensor Cable	Cable for connecting the linear motion controller and EMP Series controller (0.5 m).	77
(6)	Connector - Terminal Block Conversion Unit	Set of terminal block and cable for connecting the EMP Series controller and programmable controller (1 m).	76
(7)	Battery Set	Required for use in the absolute mode.	77
(8)	DIN Rail Mounting Plate	Use this when installing the linear motion controller to a DIN rail.	78

- Example of System Configuration

(Sold separately)			(Sold separately)		
SPV Series	$\begin{aligned} & \text { Motor Cable } \\ & (2 \mathrm{~m}) \end{aligned}$	十	Controller	Driver - Sensor Cable (0.5 m)	Connector - Terminal Block Conversion Unit (1 m)
SPV6K010U-A	CC020ES-3		EMP401-1	CC005EZ6-EMPD	CC50T 1

The system configuration shown above is an example. Other combinations are available.

Specifications of Linear Slide

Model	Lead $[\mathrm{mm}]$	Transportable Mass [kg]		Thrust $[\mathrm{N}]$	Holding Force $[\mathrm{N}]$	Maximum Speed $[\mathrm{mm} / \mathrm{s}]$
	75	~ 10	-		~ 40	400
SPV6K $\square \mathbf{D - K ~}$	75			Vertical		

- Enter the stroke length in the box (\square) within the model name.

Specifications of Sensor

Item	Model: EE-SX671A (OMRON)
Power Supply	5 to 24 VDC $\pm 10 \%$, ripple (p-p) 10% or less
Current Consumption	35 mA or less
Control Output	NPN open-collector output, 5 to $24 \mathrm{VDC}, 100 \mathrm{~mA}$ or less Residual voltage 0.8 V or less (at load current of 100 mA$)$
Indicator LED	Detection display (red)
Logic	Normally open/normally closed (switchable, depending on connection)
Type	Photomicro sensor
Quantity	3 pieces, included
Movement	Possible

Product Number Code

(1) Series SPV: SPV Series
(2) Linear Slide Size 6:Width: 60 mm Height: 67 mm
(3) Lead K: 75 mm
(4) Stroke $\mathbf{0 1 0}(100 \mathrm{~mm}) \sim \mathbf{1 0 0}(1000 \mathrm{~mm})$
(5) Motor Installation Direction U: Motor Installed on Top

D: Motor Installed on Bottom
Power Supply Voltage K: 24 VDC

Positioning Distance - Positioning Time

Check the (approximate) positioning time from the positioning distance.

SPV6K (Lead: 75 mm)
\diamond Horizontal Installation

Linear Slide/Controller Combinations

Model names for linear slide and linear motion controller combinations are shown below.

Motor Installation Direction	Model	Linear Slide Model	Controller Model
Motor Installed on Top	SPV6K \square U-K	SPVM6K \square UK	ESMC-K2
Motor Installed on Bottom	SPV6K \square D-K	SPVM6K \square DK	

- Enter the stroke length in the box (\square) within the model name.

Load Mass - Acceleration

Approximate acceleration settable by a controller can be checked from the load mass.

SPV6K (Lead: 75 mm)

[^2]
Dimensions of Linear Slide (Unit = mm)

\diamond Motor Installed on Top

* The settings " 55 ," " 10 " and " 112 " indicate the recommended mounting positions of the -LS sensor, HOME sensor and + LS sensor respectively. Sensors and a shield plate can also be installed on the opposite side.
\diamond Motor Installed on Bottom

* The settings " 55 ," " 10 " and " 112 " indicate the recommended mounting positions of the -LS sensor, HOME sensor and +LS sensor, respectively. Sensors and a shield plate can also be installed on the opposite side.

Linear Slide Model: SPVM6K \square UK (Motor Installed on Top) SPVM6K \square DK (Motor Installed on Bottom)

	Numbers Specifiable in the Box (\square) within the Linear Slide Model Name									
	010	020	030	040	050	060	070	080	090	100
Stroke	100	200	300	400	500	600	700	800	900	1000
L1	383.7	483.7	583.7	683.7	783.7	883.7	983.7	1083.7	1183.7	1283.7
L2	100	200	300	400	500	600	700	800	900	1000
n	3	4	5	6	7	8	9	10	11	12
Mass [kg]	3.8	4.2	4.5	4.9	5.2	5.6	5.9	6.3	6.6	7.0
XF Motor Installed on Top	D745	D746	D747	D748	D749	D750	D751	D752	D753	D754
DXF Motor Installed on Bottom	D765	D766	D767	D768	D769	D770	D771	D772	D773	D774

Number of Holes (2xn)	
Stroke $[\mathrm{mm}]$	$2 \times \mathrm{n}$
100	6
200	8
300	10
400	12
500	14
600	16
700	18
800	20
900	22
1000	24

Maximum Transportable Mass: Horizontal 10 kg
Stroke: 100 to 1000 mm (in 100 mm increments)

Specifications of Linear Slide

Drive Method Belt Repres	Repetitive Positioning Accuracy [mm]	m] ± 0.05	Resolution [mm]	0.01 (Driver Mode: 0.05)		Maximum Load Moment
Model	Lead [mm]	Transportable Mass [kg]		Thrust [N]	Holding Force [N]	Maximum Speed [mm / s]
		Horizontal	Vertic			
SPV6K \square U- \square	75	~ 10	-	~ 60	~ 40	1500
SPV6K \square D- \square						

- Enter the stroke length in the box (\square) within the model name.

Enter the power supply voltage \mathbf{A} or \mathbf{C} in the box (\square) within the model name.

Specifications of Sensor

Item	Model: EE-SX671A (OMRON)
Power Supply	5 to $24 \mathrm{VDC} \pm 10 \%$, ripple $(\mathrm{p}-\mathrm{p}) 10 \%$ or less
Current Consumption	35 mA or less
Control Output	NPN open-collector output, 5 to $24 \mathrm{VDC}, 100 \mathrm{~mA}$ or less Residual voltage 0.8 V or less (at load current of 100 mA$)$
Indicator LED	Detection display (red)
Logic	Normally open/normally closed (switchable, depending on connection)
Type	Photomicro sensor
Quantity	3 pieces, included
Movement	Possible

Product Number Code

(1)
(2)
(4)
(5)

Series SPV: SPV Series
Linear Slide Size 6: Width: 60 mm Height: 67 mm
Lead K: 75 mm
Stroke $\mathbf{O 1 0}(100 \mathrm{~mm}) \sim \mathbf{1 0 0}$ (1000 mm)
Motor Installation Direction U: Motor Installed on Top
D: Motor Installed on Bottom
Power Supply Voltage A: Single-Phase 100-115 VAC
C: Single-Phase 200-230 VAC

Positioning Distance - Positioning Time

Check the (approximate) positioning time from the positioning distance.

SPV6K (Lead: 75 mm)
\diamond Horizontal Installation

Notes:

The positioning time in the graph does not include the settling time. Use a settling time of 0.2 s as a reference (settling time is adjustable by speed filter function). The starting speed should be $37.5 \mathrm{~mm} / \mathrm{s}$ or less.

Dimensions of Linear Slide (Unit = mm)

\diamond Motor Installed on Top

* The settings " 55, " " 10 " and "112" indicate the recommended mounting positions of the - LS sensor, HOME sensor and + LS sensor, respectively. Sensors and a shield plate can also be installed on the opposite side.
\diamond Motor Installed on Bottom

* The settings " 55, " "10" and "112" indicate the recommended mounting positions of the -LS sensor, HOME sensor and +LS sensor, respectively. Sensors and a shield plate can also be installed on the opposite side.

Linear Slide Model: SPVM6K \square UA, SPVM6K \square UC (Motor Installed on Top)
SPVM6K \square DA, SPVM6K \square DC (Motor Installed on Bottom)

	Numbers Specifiable in the Box (\square) within the Linear Slide Model Name									
	010	020	030	040	050	060	070	080	090	100
Stroke	100	200	300	400	500	600	700	800	900	1000
L1	383.7	483.7	583.7	683.7	783.7	883.7	983.7	1083.7	1183.7	1283.7
L2	100	200	300	400	500	600	700	800	900	1000
n	3	4	5	6	7	8	9	10	11	12
Mass [kg]	3.8	4.2	4.5	4.9	5.2	5.6	5.9	6.3	6.6	7.0
XF Motor Installed on Top	D745	D746	D747	D748	D749	D750	D751	D752	D753	D754
DXF Motor Installed on Bottom	D765	D766	D767	D768	D769	D770	D771	D772	D773	D774

Number of Holes $(2 \times n)$	
Stroke $[\mathrm{mm}]$	$2 \times n$
100	6
200	8
300	10
400	12
500	14
600	16
700	18
800	20
900	22
1000	24

Specifications of Linear Slide

Drive Method	oning A	[mm]	± 0.05	Resolution [mm]		river M		mum Load Mom	nt [$\mathrm{N} \cdot \mathrm{m}$]	Mp: 33
Model	Lead [mm]	Transportable Mass [kg]					Thrust	Holding Force	Maximum Speed [mm/s]	
		Horizontal				Vertica	[N]	[N]		
SPV8L \square U- \square	90	~15 [20: Speed $750 \mathrm{~mm} / \mathrm{s}$ or less]				-	~ 70	~ 50	1500	
SPV8L \square D- \square										

- Enter the stroke length in the box (\square) within the model name.

Enter the power supply voltage \mathbf{A} or \mathbf{C} in the box (\square) within the model name.

Specifications of Sensor

Item	Model: EE-SX671A (OMRON)
Power Supply	5 to $24 \mathrm{VDC} \pm 10 \%$, ripple $(\mathrm{p}-\mathrm{p}) 10 \%$ or less
Current Consumption	35 mA or less
Control Output	NPN open-collector output, 5 to $24 \mathrm{VDC}, 100 \mathrm{~mA}$ or less Residual voltage 0.8 V or less (at load current of 100 mA$)$
Indicator LED	Detection display (red)
Logic	Normally open/normally closed (switchable, depending on connection)
Type	Photomicro sensor
Quantity	3 pieces, included
Movement	Possible

Product Number Code

Series SPV: SPV Series
(2) Linear Slide Size 8: Width: 86 mm Height: 80 mm
(3) Lead L: 90 mm

Stroke $\mathbf{0 1 0}(100 \mathrm{~mm})$ ~ $\mathbf{1 5 0}(1500 \mathrm{~mm})$
(5)

Motor Installation Direction U: Motor Installed on Top
D: Motor Installed on Bottom
Power Supply Voltage A: Single-Phase 100-115 VAC
C: Single-Phase 200-230 VAC

Positioning Distance - Positioning Time

Check the (approximate) positioning time from the positioning distance.
SPV8L (Lead: 90 mm)
\diamond Horizontal Installation

Linear Slide/Controller Combinations

Model names for linear slide and linear motion controller combinations are shown below.

Motor Installation Direction	Model	Linear Slide Model	Controller Model
Motor Installed on Top	SPV8L \square U-A	SPVM8L \square UA	ESMC-A2
	SPV8L \square U-C	SPVM8L \square UC	ESMC-C2
Motor Installed on Bottom	SPV8L \square D-A	SPVM8L \square DA	ESMC-A2
	SPV8L $\square \mathbf{D - C ~}$	SPVM8L \square DC	ESMC-C2

- Enter the stroke length in the box (\square) within the model name.

Load Mass - Acceleration

Approximate acceleration settable by a controller can be checked from the load mass.
SPV8L (Lead: 90 mm)

Notes:
The positioning time in the graph does not include the settling time. Use a settling time of 0.2 s as a reference (settling time is adjustable by speed filter function). The starting speed should be $45 \mathrm{~mm} / \mathrm{s}$ or less.

Dimensions of Linear Slide（Unit＝mm ）

\diamond Motor Installed on Top

Number of Holes（2 $2 \times n$ ）	
Stroke $[\mathrm{mm}]$	$2 \times \mathrm{n}$
100	6
200	8
300	10
400	12
500	14
600	16
700	18
800	20
900	22
1000	24
1100	26
1200	28
1300	30
1400	32
1500	34

Motorized Cylinders

EZ limo EZC II Series

The structure of this motorized cylinder has been optimized to achieve greater convenience and performance in positioning applications. The compact design facilitates simpler installation and wiring to your system.

Large Transportable Mass

The EZCII Series can perform positioning of loads with a large transportable mass.
EZC6 (Lead 6 mm)
-Maximum Transportable Mass*: Horizontal 60 kg Vertical 30 kg

* The value when an external guide is used.
.Mexammmurforece 400 N
- Maximum Push Force: 500 N

The EZCII Series can perform positioning at high speed. EZC4 / EZC6 (Lead 12 mm)
-Maximum Speed: $\mathbf{6 0 0}$ mm/s

- Sensorless Return to Home at Speed of 100 mm/s

We have developed a dedicated stop buffer to achieve sensorless return to home operation at a maximum speed of $100 \mathrm{~mm} / \mathrm{s}$.

The shape of the motor cable outlet was changed to eliminate dead space.
The total length of cylinder is shorter for every stroke or model, which enables space-saving design of your equipment.

Since the space outside the cylinder's operating range is minimized, the overall system size can be reduced.

Vibration Suppression Function

The newly developed control method achieves low vibration even at the speed range where large vibration occurs normally.

Lightweight Rod

Use of an aluminum rod reduced the weight by 25% * compared to a conventional model.
*EZC6: Stroke 300 mm

RoHS) RoHS-Compliant

The EZCII Series conforms to the RoHS Directive that prohibits the use of six chemical substances including lead and cadmium.

Maintenance-Free for Long-Term Performance

The ball screw employs the QZ ${ }^{\text {TM }}$ lubrication system. * QZ ${ }^{\text {™ }}$ lubrication system: High-density fiber net supplies appropriate amounts of oil, thereby preventing oil wastage and reducing environmental burden.

- QZ are registered trademarks of THK Co., Ltd.

EZC4D015-A Stroke 150 mm

Easy Wiring

The cylinder and controller are connected via a single cable, and the wiring distance can be extended to a maximum of 20 m . The cable is fitted with a connector for quick connection.

* Maximum of 10 m for 24 VDC products

System Configuration

- Controller Mode

No.	Product Name	Overview	Page
(1)	Motor Cables	This dedicated cable connects the cylinder and linear motion controller (1 to 20 m$)$. Be sure to purchase this cable.	74
(2)	Teaching Pendant	Various data can be set and operated at your fingertips. The cable length is 5 m.	75
(3)	Data Editing Software	Various data can be set and edited on a personal computer. A dedicated communication cable is included (5 m).	75
(4)	I/O Cables	Cable for connecting the linear motion controller and programmable controller ($1 \mathrm{~m}, 2 \mathrm{~m})$.	77
(5)	Connector - Terminal Block Conversion Unit	Set of terminal block and cable for connecting the linear motion controller and programmable controller (1 m$).$	76
(6)	Battery Set	Required for use in the absolute mode.	77
(7)	DIN Rail Mounting Plate	Use this when installing the linear motion controller to a DIN rail.	78

- Example of System Configuration

(Sold separately)			(Sold separately)
\#ZCII Series	Motor Cable (2 m)	Teaching Pendant	I/O Cable (1 m)
EZC4E005-A	CCO20ES-2	EZT 1	CC36D1-1

The system configuration shown above is an example. Other combinations are available.

- Driver Mode

An example of a single-axis system configuration with the EMP400 Series controller.
When performing a return to home operation using the linear motion controller, refer to the system configuration on page 30 .
Teaching pendant or data editing software is required to change parameters (l/O logic, speed filter, etc.) of the linear motion controller.

The system configuration shown above is an example. Other combinations are available.

Product Number Code

EZC
(1)

4 D 030 M - K
(4)
(5)

(1)	Series EZC: EZCIISeries	
(2)	$\begin{array}{ll}\text { Cylinder Size } & \text { 4: Frame Size } 42 \mathrm{~mm} \times 42 \mathrm{~mm} \\ & \text { 6: Frame Size } 60 \mathrm{~mm} \times 60 \mathrm{~mm}\end{array}$	
(3)	Lead D: 12 mm E: 6 mm	
(4)	Stroke $\begin{aligned} & \text { 005: } 50 \mathrm{~mm} \\ & \text { 020: } 200 \mathrm{~mm}\end{aligned}$	$\begin{array}{ll} \text { 010: } 100 \mathrm{~mm} & \text { 015: } 150 \mathrm{~mm} \\ \text { 025: } 250 \mathrm{~mm} & \text { 030: } 300 \mathrm{~mm} \end{array}$
(5)	Electromagnetic Brake Blank: Without Electromagnetic BrakeM: With Electromagnetic Brake	
(6)	Power Supply Voltage K: 24 VDC A: Single-Phase 100-115 VAC C: Single-Phase 200-230 VAC	

Product Line

-EZC4

\diamond Without Electromagnetic Brake

Stroke	24 VDC	Single-Phase 100-115 VAC	Single-Phase 200-230 VAC
	Model	Model	Model
50 mm	EZC4 $\square \mathbf{0 0 5 - K}$	EZC4 $\square \mathbf{0 0 5 - A}$	EZC4 $\square \mathbf{0 0 5 - C}$
100 mm	EZC4 $\square \mathbf{0 1 0 - K}$	EZC4 $\square \mathbf{0 1 0 - A}$	EZC4 $\square \mathbf{0 1 0 - C}$
150 mm	EZC4 $\square \mathbf{0 1 5 - K}$	EZC4 $\square \mathbf{0 1 5 - A}$	EZC4 $\square \mathbf{0 1 5 - C}$
200 mm	EZC4 $\square \mathbf{0 2 0 - K}$	EZC4 $\square \mathbf{0 2 0 - A}$	EZC4 $\square \mathbf{0 2 0 - C}$
250 mm	EZC4 $\square \mathbf{0 2 5 - K}$	EZC4 $\square \mathbf{0 2 5 - A}$	EZC4 $\square \mathbf{0 2 5 - C}$
300 mm	EZC4 $\square \mathbf{0 3 0 - K}$	EZC4 $\square \mathbf{0 3 0 - A}$	EZC4 $\square \mathbf{0 3 0 - C}$

- Enter the lead $\mathbf{D}(12 \mathrm{~mm})$ or $\mathbf{E}(6 \mathrm{~mm})$ in the box (\square) within the model name.
\diamond With Electromagnetic Brake

Stroke	24 VDC	Single-Phase 100-115 VAC	Single-Phase 200-230 VAC
	Model	Model	Model
50 mm	EZC4 $\square \mathbf{0 0 5 M - K}$	EZC4 $\square \mathbf{0 0 5 M - A}$	EZC4 $\square \mathbf{0 0 5 M - C}$
100 mm	EZC4 $\square \mathbf{0 1 0 M - K}$	EZC4 $\square \mathbf{0 1 0 M - A}$	EZC4 $\square \mathbf{0 1 0 M - C}$
150 mm	EZC4 $\square \mathbf{0 1 5 M - K}$	EZC4 $\square \mathbf{0 1 5 M - A}$	EZC4 $\square \mathbf{0 1 5 M - C}$
200 mm	EZC4 $\square \mathbf{0 2 0 M - K}$	EZC4 $\square \mathbf{0 2 0 M - A}$	EZC4 $\square \mathbf{0 2 0 M - C}$
250 mm	EZC4 $\square \mathbf{0 2 5 M - K}$	EZC4 $\square \mathbf{0 2 5 M - A}$	EZC4 $\square \mathbf{0 2 5 M - C}$
300 mm	EZC4 $\square \mathbf{0 3 0 M - K}$	EZC4 $\square \mathbf{0 3 0 M - A}$	EZC4 $\square \mathbf{0 3 0 M - C ~}$

- Enter the lead $\mathbf{D}(12 \mathrm{~mm})$ or $\mathbf{E}(6 \mathrm{~mm})$ in the box (\square) within the model name.

EZC6

\diamond Without Electromagnetic Brake

Stroke	24 VDC	Single-Phase 100-115 VAC	Single-Phase 200-230 VAC
	Model	Model	Model
50 mm	EZC6 $\square \mathbf{0 0 5 - K}$	EZC6 $\square \mathbf{0 0 5 - A}$	EZC6 $\square \mathbf{0 0 5 - C}$
100 mm	EZC6 $\square \mathbf{0 1 0 - K}$	EZC6 $\square 010-\mathbf{A}$	EZC6 $\square \mathbf{0 1 0 - C}$
150 mm	EZC6 $\square \mathbf{0 1 5 - K}$	EZC6 $\square \mathbf{0 1 5 - A}$	EZC6 $\square \mathbf{0 1 5 - C}$
200 mm	EZC6 $\square \mathbf{0 2 0 - K}$	EZC6 $\square \mathbf{0 2 0 - A}$	EZC6 $\square \mathbf{0 2 0 - C}$
250 mm	EZC6 $\square \mathbf{0 2 5 - K}$	EZC6 $\square \mathbf{0 2 5 - A}$	EZC6 $\square \mathbf{0 2 5 - C}$
300 mm	EZC6 $\square \mathbf{0 3 0 - K}$	EZC6 $\square \mathbf{0 3 0 - A}$	EZC6 $\square \mathbf{0 3 0 - C}$

- Enter the lead $\mathbf{D}(12 \mathrm{~mm})$ or $\mathbf{E}(6 \mathrm{~mm})$ in the box (\square) within the model name.
\diamond With Electromagnetic Brake

Stroke	24 VDC	Single-Phase 100-115 VAC	Single-Phase 200-230 VAC
	Model	Model	Model
50 mm	EZC6 $\square \mathbf{0 0 5 M - K}$	EZC6 $\square \mathbf{0 0 5 M - A}$	EZC6 $\square \mathbf{0 0 5 M - C}$
100 mm	EZC6 $\square \mathbf{0 1 0 M - K}$	EZC6 $\square \mathbf{0 1 0 M - A}$	EZC6 $\square \mathbf{0 1 0 M - C}$
150 mm	EZC6 $\square \mathbf{0 1 5 M - K}$	EZC6 $\square \mathbf{0 1 5 M - A}$	EZC6 $\square \mathbf{0 1 5 M - C}$
200 mm	EZC6 $\square \mathbf{0 2 0 M - K}$	EZC6 $\square \mathbf{0 2 0 M - A}$	EZC6 $\square \mathbf{0 2 0 M - C}$
250 mm	EZC6 $\square \mathbf{0 2 5 M - K}$	EZC6 $\square \mathbf{0 2 5 M - A}$	EZC6 $\square \mathbf{0 2 5 M - C}$
300 mm	EZC6 $\square \mathbf{0 3 0 M - K}$	EZC6 $\square \mathbf{0 3 0 M - A}$	EZC6 $\square \mathbf{0 3 0 M - C ~}$

Enter the lead $\mathbf{D}(12 \mathrm{~mm})$ or $\mathbf{E}(6 \mathrm{~mm})$ in the box (M) within the model name.
-The following items are included in each product.
Cylinder, Controller, Mounting Bracket for Controller, Hexagonal Nut, User I/O Connector, Sensor I/O Connector, Operating Manual

General Specifications of Motor

This is the value after rated operation under normal ambient temperature and humidity.

Item	Specification
Insulation Resistance	$100 \mathrm{M} \Omega$ or more when 500 VDC megger is applied between the following places: -Motor case - Motor/Sensor windings -Motor case - Windings of electromagnetic brake (Only for electromagnetic brake type)
Dielectric Strength	Sufficient to withstand the following for 1 minute: -Motor case - Motor/Sensor windings $\quad 0.5$ kVAC 50 Hz -Motor case - Windings of electromagnetic brake (Only for electromagnetic brake type) $\quad 0.5 \mathrm{kVAC} 50 \mathrm{~Hz}$
Ambient Temperature	$0 \sim+40^{\circ} \mathrm{C}$ (non-freezing)
Ambient Humidity	85\% or less (non-condensing)
Note: - Do not measure insul and controller are co	ation resistance or perform the dielectric strength test while the cylinder nected.

Safety Standards and CE Marking

Power Supply Voltage	Product	CE Marking
24 VDC	Cylinder	EMC Directives
	Controller	
Single-Phase 100-115 VAC	Cylinder	Low Voltage Directives
	Controller	EMC Directives

- The EMC value changes according to the wiring and layout. Therefore, the final EMC level must be checked with the cylinder/controller incorporated in the user's equipment. If you require EMC data of cylinders or controllers, please contact the nearest Oriental Motor sales office.

- Machinery Directive (98/37/EC)

The cylinders, controllers and teaching pendants are designed and manufactured for use in general industrial equipment as an internal component, and therefore need not comply with the Machinery Directive. However, each product has been evaluated under the following standards to ensure proper operation:
EN ISO 12100-1, EN ISO 12100-2, EN 1050, EN 60204-1

\diamond Emergency Stop Function

The emergency stop circuit in the teaching pendant or controller is designed in accordance with the requirements of Category 1 under EN 954-1.
Refer to page 26 for a connection example that conforms to Stop Category 0 (non-controlled stop) under EN 60204-1.

\diamond Emergency Stop Circuit

The customer must provide an appropriate emergency stop circuit by conducting risk assessment based on your system.

Item	Specification
Insulation Resistance	$100 \mathrm{M} \Omega$ or more when 500 VDC megger is applied between the following places: -Motor case - Motor/Sensor windings -Motor case - Windings of electromagnetic brake (Only for electromagnetic brake type)
Dielectric Strength	Sufficient to withstand the following for 1 minute: -Motor case - Motor/Sensor windings EZC4: 1.0 kVAC 50 Hz EZC6: 1.5 kVAC 50 Hz -Motor case - Windings of electromagnetic brake (Only for electromagnetic brake type) 1.0 kVAC 50 Hz
Ambient Temperature	$0 \sim+40^{\circ} \mathrm{C}$ (non-freezing)
Ambient Humidity	85\% or less (non-condensing)
Note: - Do not measure insula and controller are con	lation resistance or perform the dielectric strength test while the cylin nnected.

EZCII Series Using $\alpha_{\text {step }}$ Motor
EZC4: Frame Size $42 \mathrm{~mm} \times 42 \mathrm{~mm} 24 \mathrm{vDC}$
Maximum Transportable Mass: Horizontal $30 \mathrm{~kg} /$ Vertical 14 kg
Stroke: 50 to 300 mm (in 50 mm increments)
Specifications of Cylinder ROHS CE

| Drive Method | Ball Screw | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | |
| Repetitive Positioning Accuracy [mm] | ± 0.02 | | |
| | Resolution [mm] | 0.01 | |

Model	$\begin{aligned} & \text { Lead } \\ & {[\mathrm{mm}]} \end{aligned}$	Transportable Mass [kg]*		Thrust [N]	Push Force $[\mathrm{N}]^{*}$	Electromagnetic Brake Holding Force [N]	Maximum Speed [mm/s]
		Horizontal	Vertical				
EZC4D \square-K	12	~ 15	-	~ 70	100	-	600
EZC4D \square M-K			~ 6.5			70	
EZC4ED-K	6	~ 30	-	~140	200	-	300
EZC4E \square M-K			~ 14			140	

Enter the stroke length in the box (\square) within the model name.

* 1 The value when an external guide is used.
*2 Maximum speed of push-motion operation is $25 \mathrm{~mm} / \mathrm{s}$.
Notes
- Avoid using the cylinder in such a way that the rod receives an overhung load or angular load moment.

Provide a guide or other appropriate mechanism to prevent the rod from receiving a load other than in the axial direction. (Some simple external anti-spin mechanism is provided.)

- The cylinder returns to home only towards the motor in sensorless return to home.

Product Number Code

(1)

(2) (3)
(4)
(5)
(6)
(1) Series EZC: EZCII Series
(2) Cylinder Size 4: Frame Size 42 mm
(3) Lead D: 12 mm E: 6 mm
(4) Stroke $\mathbf{0 0 5}(50 \mathrm{~mm}) \sim \mathbf{0 3 0}(300 \mathrm{~mm})$
(5) Electromagnetic Brake Blank: Without Electromagnetic Brake

M:With Electromagnetic Brake

Check the Positioning Time

Check the (approximate) positioning time from the positioning distance.
For the operating speed and acceleration, refer to "selection calculations" on page 82.
EZC4D (Lead: 12 mm)
\diamond Horizontal Installation

- Positioning Distance - Positioning Time

\diamond Vertical Installation
- Positioning Distance - Positioning Time

Notes

- Positioning Distance - Operating Speed

- Positioning Distance - Operating Speed

- Positioning Distance - Acceleration

- Positioning Distance - Acceleration

- The positioning time in the graph does not include the settling time. Use a settling time of 0.15 s as a reference. (Setting time is adjustable by speed filter function.)
- The starting speed should be $6 \mathrm{~mm} / \mathrm{s}$ or less.

EZC4E (Lead: 6 mm)
\diamond Horizontal Installation

Notes:
The positioning time in the graph does not include the settling time. Use a settling time of 0.15 s as a reference. (Settling time is adjustable by speed filter function.) The starting speed should be $6 \mathrm{~mm} / \mathrm{s}$ or less.

Push Force

EZC4D (Lead: 12 mm)

EZC4E (Lead: 6 mm)

Notes:
When the cylinder is used in a vertical direction, an external force calculated by multiplying the weight of the carried object by the rate of gravitational acceleration must be considered. Measure the push force and set an appropriate push current. The graph shows a reference value of external force at horizontal operation.
Operate the cylinder within the push current showing this graph.

Dimensions of Cylinder (Unit = mm)

Cylinder Model: EZCM4D $\square \mathrm{K}, \mathrm{EZCM4E} \square \mathrm{~K}$ (Without electromagnetic brake) EZCM4D \square MK, EZCM4E \square MK (With electromagnetic brake)

	Electromagnetic Brake	Numbers Specifiable in the Box (\square) within the cylinder Model Name					
		005	010	015	020	025	030
Stroke	Not Equipped/Equipped	50	100	150	200	250	300
L1	Not Equipped	235	285	335	385	435	485
	Equipped	270	320	370	420	470	520
L2	Not Equipped/Equipped	111.5	161.5	211.5	261.5	311.5	361.5
	Not Equipped	1.3	1.5	1.7	1.9	2.0	2.2
	Equipped	1.5	1.7	1.9	2.1	2.2	2.4
DXF	Not Equipped	D1294	D1295	D1296	D1297	D1298	D1299
	Equipped	D1300	D1301	D1302	D1303	D1304	D1305

- Nut (1 piece, included) M14 P1.5

Specifications of Cylinder RoHS				$C \in$			Maximum Speed [mm/s]
Drive Method ${ }^{\text {Bal }}$	Repetitive Positioning Accuracy [mm]		± 0.02 Res	mm]			
Model	Lead [mm]	Transportable Mass [kg] ${ }^{* 1}$		Thrust [N]	Push Force [N]	Electromagnetic Brake Holding Force [N]	
		Horizontal	Vertical				
EZC4D \square - \square			-			-	
EZC4D \square M- \square	12	~ 15	~ 6.5	~ 70	100	70	600
EZC4E \square - \square	6	~ 30	-	0	20	-	0
EZC4E \square M- \square	6	~ 30	~ 14	0	200	140	0

- Enter the stroke length in the box (\square) within the model name.
- Enter the power supply voltage \mathbf{A} or \mathbf{C} in the box (\square) within the model name.
* 1 The value when an external guide is used.
*2 Maximum speed of push-motion operation is $25 \mathrm{~mm} / \mathrm{s}$.
Notes:
- Avoid using the cylinder in such a way that the rod receives an overhung load or angular load moment.

Provide a guide or other appropriate mechanism to prevent the rod from receiving a load other than in the axial direction. (Some simple external anti-spin mechanism is provided.)
The cylinder returns to home only towards the motor in sensorless return to home.

Product Number Code

(1)	Series EZC: EZCII Series
(2)	Cylinder Size 4: Frame Size 42 mm
(3)	Lead D: $12 \mathrm{~mm} \quad$ E: 6 mm
(4)	Stroke $\mathbf{0 0 5 ~}(50 \mathrm{~mm}) \sim \mathbf{0 3 0}(300 \mathrm{~mm})$
(5)	Electromagnetic Brake
	Blank: Without Electromagnetic Brake $\mathbf{M}:$ With Electromagnetic Brake
(6)	Power Supply Voltage
A: Single-Phase 100-115 VAC	
C: Single-Phase 200-230 VAC	

Check the Positioning Time

Check the (approximate) positioning time from the positioning distance.
For the operating speed and acceleration, refer to "selection calculations" on page 82.

EZC4D (Lead: 12 mm)

\diamond Horizontal Installation

- Positioning Distance - Positioning Time
- Positioning Distance - Acceleration

- Positioning Distance - Acceleration

Cylinder/Controller Combinations

Model names for cylinder and linear motion controller combinations are shown below.

Electromagnetic Brake	Model	Cylinder Model	Controller Model
Not equipped	EZC4D \square-A	EZCM4D $\square \mathrm{A}$	ESMC-A2
	EZC4D \square-C	EZCM4D $\square \mathrm{C}$	ESMC-C2
	EZC4E \square-A	EZCM4E $\square \mathrm{A}$	ESMC-A2
	EZC4E \square-C	EZCM4E \square C	ESMC-C2
Equipped	EZC4D $\square \mathbf{M - A ~}$	EZCM4D \square MA	ESMC-A2
	EZC4D $\square \mathbf{M - C ~}$	EZCM4D \square MC	ESMC-C2
	EZC4E $\square \mathbf{M - A ~}$	EZCM4E \square MA	ESMC-A2
	EZC4E $\square \mathbf{M - C ~}$	EZCM4E \square MC	ESMC-C2

- Enter the stroke length in the box (\square) within the model name.
- Positioning Distance - Operating Speed

\diamond Vertical Installration
- Positioning Distance - Positioning Time

- The positioning time in the graph does not include the settling time. Use a settling time of 0.15 s as a reference. (Settling time is adjustable by speed filter function.) - The starting speed should be $6 \mathrm{~mm} / \mathrm{s}$ or less.

EZC4E (Lead: 6 mm)
\diamond Horizontal Installation

\diamond Vertical Installration

- Positioning Distance - Positioning Time

- Positioning Distance - Operating Speed

- Positioning Distance - Operating Speed

- Positioning Distance - Acceleration

- Positioning Distance - Acceleration

Notes:
The positioning time in the graph does not include the settling time. Use a settling time of 0.15 s as a reference. (Settling time is adjustable by speed filter function.) The starting speed should be $6 \mathrm{~mm} / \mathrm{s}$ or less.

Push Force

EZC4D (Lead: 12 mm)

EZC4E (Lead: 6 mm)

Notes:
When the cylinder is used in a vertical direction, an external force calculated by multiplying the weight of the carried object by the rate of gravitational acceleration must be considered. Measure the push force and set an appropriate push current. The graph shows a reference value of external force at horizontal operation.

- Operate the cylinder within the push current showing this graph.

Dimensions of Cylinder (Unit = mm)

Cylinder Model: EZCM4D $\square \mathrm{A}, \mathrm{EZCM4E} \square \mathrm{~A}$, EZCM4D $\square \mathrm{C}, \mathrm{EZCM4E} \square \mathrm{C}$ (Without electromagnetic brake) EZCM4D \square MA, EZCM4E \square MA, EZCM4D \square MC, EZCM4E \square MC (With electromagnetic brake)

	$*$	Electromagnetic Brake							
		005	010	015	020	025	030		
	Not Equipped/Equipped	50	100	150	200	250	300		
L1	Not Equipped	235	285	335	385	435	485		
	Equipped	270	320	370	420	470	520		
L2	Not Equipped/Equipped	111.5	161.5	211.5	261.5	311.5	361.5		
	Not Equipped	1.3	1.5	1.7	1.9	2.0	2.2		
	Equipped	1.5	1.7	1.9	2.1	2.2	2.4		
DXF	Not Equipped	D1294	D1295	D1296	D1297	D1298	D1299		
	Equipped	D1300	D1301	D1302	D1303	D1304	D1305		

- Nut (1 piece, included)

M14 P1.5

EZCII Series Using $\alpha_{\text {ster }}$ Motor
EZC6: Frame Size $60 \mathrm{~mm} \times 60 \mathrm{~mm}{ }_{24 \mathrm{vdc}}$
Maximum Transportable Mass: Horizontal $60 \mathrm{~kg} /$ Vertical 30 kg
Stroke: 50 to 300 mm (in 50 mm increments)

Specifications of Cylinder RoHS				CE			Maximum Speed$[\mathrm{mm} / \mathrm{s}]$
Drive Method ${ }^{\text {Bal }}$	Repetitive Positioning Accuracy [mm]		± 0.02	[mm]			
Model	$\begin{aligned} & \hline \text { Lead } \\ & {[\mathrm{mm}]} \\ & \hline \end{aligned}$	Transportable Mass [kg]*1		$\begin{gathered} \text { Thrust } \\ {[\mathrm{N}]} \\ \hline \end{gathered}$	Push Force [N]	Electromagnetic Brake Holding Force [N]	
		Horizontal	Vertical				
EZC6D \square-K	12	~ 30	-	~ 200	400	-	600
EZC6D \square M-K	12	~ 30	~ 15	~ 200	400	200	600
EZC6E \square-K			-			-	
EZC6E \square M-K	6	~ 60	~ 30	~ 400	500	400	300

- Enter the stroke length in the box (\square) within the model name.
* 1 The value when an external guide is used.
*2 Maximum speed of push-motion operation is $25 \mathrm{~mm} / \mathrm{s}$.
Notes
- Avoid using the cylinder in such a way that the rod receives an overhung load or angular load moment.

Provide a guide or other appropriate mechanism to prevent the rod from receiving a load other than in the axial direction. (Some simple external anti-spin mechanism is provided.)

- The cylinder returns to home only towards the motor in sensorless return to home.

Product Number Code

$\frac{\text { EZC }}{\text { (1) }} \frac{6}{(2)} \frac{\mathbf{D}}{\frac{0}{3}} \frac{\mathbf{0 3 0}}{(4)} \frac{\mathbf{M}}{(3)}-\frac{K}{6}$

Cylinder/Controller Combinations

Model names for cylinder and linear motion controller combinations are shown below.

Electromagnetic Brake	Model	Cylinder Model	Controller Model
Not equipped	EZC6D \square-K	EZCM6DロK	ESMC-K2
	EZC6E-K	EZCM6EDK	
Equipped	EZC6D \square M-K	EZCM6D]MK	
	EZC6EDM-K	EZCM6EDMK	

Enter the stroke length in the box (\square) within the model name.
(1) Series EZC: EZCII Series
(2) Cylinder Size 6: Frame Size 60 mm
(3) Lead D: 12 mm E: 6 mm
(4) Stroke $\mathbf{0 0 5}$ (50 mm$) \sim \mathbf{0 3 0}$ (300 mm)
(5) Electromagnetic Brake Blank: Without Electromagnetic Brake

M: With Electromagnetic Brake
(6) Power Supply Voltage K: 24 VDC

Check the Positioning Time

Check the (approximate) positioning time from the positioning distance.
For the operating speed and acceleration, refer to "selection calculations" on page 82.
EZC6D (Lead: 12 mm)
\diamond Horizontal Installation

- Positioning Distance - Positioning Time

\diamond Vertical Installration
- Positioning Distance - Positioning Time

Notes:

- Positioning Distance - Operating Speed

- Positioning Distance - Operating Speed

- Positioning Distance - Acceleration

- Positioning Distance - Acceleration

- The positioning time in the graph does not include the settling time. Use a settling time of 0.15 s as a reference. (Settling time is adjustable by speed filter function.)
- The starting speed should be $6 \mathrm{~mm} / \mathrm{s}$ or less.

EZC6E (Lead: 6 mm)
\diamond Horizontal Installation

Notes:

- The positioning time in the graph does not include the settling time. Use a settling time of 0.15 s as a reference. (Settling time is adjustable by speed filter function.) - The starting speed should be $6 \mathrm{~mm} / \mathrm{s}$ or less.

Push Force

-EZC6D (Lead: 12 mm)

-EZC6E (Lead: 6 mm)

Notes:
When the cylinder is used in a vertical direction, an external force calculated by multiplying the weight of the carried object by the rate of gravitational acceleration must be considered. Measure the push force and set an appropriate push current. The graph shows a reference value of external force at horizontal operation.

- Operate the cylinder within the push current showing this graph.

Dimensions of Cylinder (Unit = mm)

Enter the stroke length in the box (\square) within the model name.

- Enter the power supply voltage \mathbf{A} or \mathbf{C} in the box (\square) within the model name.
* 1 The value when an external guide is used.
*2 Maximum speed of push-motion operation is $25 \mathrm{~mm} / \mathrm{s}$.
Notes:
- Avoid using the cylinder in such a way that the rod receives an overhung load or angular load moment.

Provide a guide or other appropriate mechanism to prevent the rod from receiving a load other than in the axial direction. (Some simple external anti-spin mechanism is provided.)
The cylinder returns to home only towards the motor in sensorless return to home.

Product Number Code

(1)
(2) (3)
(4)
(5)
(6)

(1)	Series EZC: EZCII Series
(2)	Cylinder Size 6: Frame Size 60 mm
(3)	Lead D: $12 \mathrm{~mm} \mathrm{E:} 6 \mathrm{~mm}$
(4)	Stroke $\mathbf{0 0 5}(50 \mathrm{~mm}) \sim \mathbf{0 3 0}(300 \mathrm{~mm})$
(5)	Electromagnetic BrakeBlank: Without Electromagnetic Brake M: With Electromagnetic Brake
(6)	Power Supply Voltage
A: Single-Phase 100-115 VAC C: Single-Phase 200-230 VAC	

Cylinder/Controller Combinations

Model names for cylinder and linear motion controller combinations are shown below.

Electromagnetic Brake	Model	Cylinder Model	Controller Model
Not equipped	EZC6D \square-A	EZCM6D \square A	ESMC-A2
	EZC6D \square-C	EZCM6D $\square \mathrm{C}$	ESMC-C2
	EZC6E \square-A	EZCM6E \square A	ESMC-A2
	EZC6E \square-C	EZCM6E \square C	ESMC-C2
Equipped	EZC6D \square M-A	EZCM6D \square MA	ESMC-A2
	EZC6D \square M-C	EZCM6D \square MC	ESMC-C2
	EZC6E \square M-A	EZCM6E \square MA	ESMC-A2
	EZC6E \square M-C	EZCM6E \square MC	ESMC-C2

Enter the stroke length in the box (\square) within the model name.

Check the Positioning Time

Check the (approximate) positioning time from the positioning distance.
For the operating speed and acceleration, refer to "selection calculations" on page 82.

EZC6D (Lead: 12 mm)

\diamond Horizontal Installation

- Positioning Distance - Positioning Time

\diamond Vertical Installration
- Positioning Distance - Positioning Time

- Positioning Distance - Operating Speed

- Positioning Distance - Operating Speed

- Positioning Distance - Acceleration

- Positioning Distance - Acceleration

Notes:

- The positioning time in the graph does not include the settling time. Use a settling time of 0.15 s as a reference. (Settling time is adjustable by speed filter function.) - The starting speed should be $6 \mathrm{~mm} / \mathrm{s}$ or less.

EZC6E (Lead: 6 mm)

\diamond Horizontal Installation

Notes:

- The positioning time in the graph does not include the settling time. Use a settling time of 0.15 s as a reference. (Settling time is adjustable by speed filter function.) - The starting speed should be $6 \mathrm{~mm} / \mathrm{s}$ or less.

Push Force

-EZC6D (Lead: 12 mm)

EZC6E (Lead: 6 mm)

Notes:
When the cylinder is used in a vertical direction, an external force calculated by multiplying the weight of the carried object by the rate of gravitational acceleration must be considered. Measure the push force and set an appropriate push current. The graph shows a reference value of external force at horizontal operation.

- Operate the cylinder within the push current showing this graph.

Dimensions of Cylinder (Unit = mm)

Cylinder Model: EZCM6D $\square \mathrm{A}, \mathrm{EZCM6E} \square \mathrm{~A}, \mathrm{EZCM}$ DD $\square \mathrm{C}, \mathrm{EZCM6E} \square \mathrm{C}$ (Without electromagnetic brake)
EZCM6D \square MA, EZCM6E \square MA, EZCM6D \square MC, EZCM6E \square MC (With electromagnetic brake)

	Electromagnetic Brake	Numbers Specifiable in the Box (\square) within the Cylinder Model Name					
		005	010	015	020	025	030
Stroke	Not Equipped/Equipped	50	100	150	200	250	300
L1	Not Equipped	253.5	303.5	353.5	403.5	453.5	503.5
	Equipped	294	344	394	444	494	544
L2	Not Equipped/Equipped	112	162	212	262	312	362
	Not Equipped	2.7	3.0	3.3	3.6	3.9	4.2
	Equipped	3.1	3.4	3.7	4.0	4.3	4.6
DXF	Not Equipped	D 1306	D 1307	D 1308	D 1309	D 1310	D 1311
	Equipped	D 1312	D 1313	D 1314	D 1315	D 1316	D 1317

- Nut (1 piece, included)

M18 P1.5

RoHS RoHS-Compliant

Motorized Cylinders

EZ limo EZA Series

With a built-in LM Guide ${ }^{\circledR}$, the EZA Series Motorized Cylinder offers improved performance and greater ease of use while maintaining a compact size. There is no need for the guide mechanism, such as an external guide, requiring cumbersome installation. Simply install a load directly onto the rod, and this motorized cylinder will perform the push-motion and transfer operations.

Space-Saving

The shape of the motor cable outlet was changed to eliminate dead space.
The total length of cylinder is shorter for every stroke or model, which enables space-saving design of your equipment,

Built-In LM Guide ${ }^{\circledR}$

The LM Guide ${ }^{\circledR}$ is housed within the motorized cylinder, and as a result the EZA Series achieves a compact size and provides greater ease of use.

Internal Structure

No External Guide Required

There is no need for a guide mechanism such as an external guide. This cylinder provides a direct way to perform transferring of a load and a push-motion (pressurized) operation.

AFF grease, which is designed for use in clean rooms and features low particle emissions, is used for the ball screw and LM Guide ${ }^{\circledR}$.

- "LM Guide" is a registered trademark of THK Co., Ltd

Easy Stroke Selection

A desired stroke can be selected in 50 mm increments over the following ranges:
50 to 300 mm

Easy to Install

Freedom of Installation

The installation method can be chosen from securing the cylinder＇s rod surface or base surface．An optional mounting plate for two－axis type， etc．is sold separately．

Securing the Base Surface

－Installation with a Mounting Plate
 （Sold separately）
 （ \rightarrow Page 80）

RoHS－Compliant

The EZA Series conforms to the RoHS Directive that prohibits the use of six chemical substances including lead and cadmium．

Easy Wiring

The cylinder and controller are connected via a single cable，and the wiring distance can be extended to a maximum of $20 \mathrm{~m}^{*}$ ．The cable is fittted with a connector for quick connection．
＊Maximum of 10 m for 24 VDC products．

The cable can be placed in a flexible conduit or cable gland with an inner diameter of $\phi 16.5 \mathrm{~mm}$ ．

System Configuration

- Controller Mode

No.	Product Name	Overview	Page
(1)	Motor Cables	This dedicated cable connects the cylinder and linear motion controller (1 to 20 m). Be sure to purchase this cable.	74
(2)	Teaching Pendant	Various data can be set and operated at your fingertips. The cable length is 5 m .	75
(3)	Data Editing Software	Various data can be set and edited on a personal computer. A dedicated communication cable is included (5 m).	75
(4)	Mounting Plates	The plates that secure the cylinder with screws mounted from above.	80
(5)	Dual Axes Mounting Plates	Bracket that makes dual axes combination easy.	79
(6)	I/O Cables	Cable for connecting the linear motion controller and programmable controller (1 m, 2 m).	77
(7)	Connector - Terminal Block Conversion Unit	Set of terminal block and cable for connecting the linear motion controller and programmable controller (1 m).	76
(8)	Battery Set	Required for use in the absolute mode.	77
(9)	DIN Rail Mounting Plate	Use this when installing the linear motion controller to a DIN rail.	78

- Example of System Configuration

(Sold separately) (Sold separately)

FZASeries	Motor Cable (2 m)	Teaching Pendant	Mounting Plate	I/O Cable (1 m)
EZA4E005-A	CCO20ES-2	EZT 1	PTP-4A	CC36D1-1

[^3]
- Driver Mode

An example of a single-axis system configuration with the EMP400 Series controller.
When performing a return to home operation using the linear motion controller, refer to the system configuration on page 44.
Teaching pendant or data editing software is required to change parameters (I/O logic, speed filter, etc.) of the linear motion controller.

No.	Product Name		Overview
(1)	Motor Cables	This dedicated cable connects the cylinder and linear motion controller (1 to 20 m$)$. Be sure to purchase this cable.	74
(2)	Controller	This controller gives commands needed to drive the cylinder.	$*$
(3)	Mounting Plates	The plates that secure the cylinder with screws mounted from above.	80
4 (4)	Dual Axes Mounting Plates	Bracket that makes dual axes combination easy.	79
(5)	Driver - Sensor Cable	Cable for connecting the linear motion controller and EMP Series controller (0.5 m).	77
(6)	Connector - Terminal Block Conversion Unit	Set of terminal block and cable for connecting the EMP Series controller and programmable controller (1 m).	76
(7)	Battery Set	Required for use in the absolute mode.	77
(8)	DIN Rail Mounting Plate	Use this when installing the linear motion controller to a DIN rail.	78

- Example of System Configuration

Product Number Code

EZA
(1)
$4 D$
(2) (3)
005 M
$-K$
(6)

(1)	Series EZA: EZA Series	
(2)	$\begin{aligned} & \text { Cylinder Size } \\ & \text { 4: Fram } \\ & \text { 6: Fra }\end{aligned}$	4: Frame Size $54 \mathrm{~mm} \times 38 \mathrm{~mm}$ 6: Frame Size $74 \mathrm{~mm} \times 52.5 \mathrm{~mm}$
(3)	Lead D: 12	D: $12 \mathrm{~mm} \quad$ E: 6 mm
(4)	Stroke 005: $\mathbf{0 2 0}:$	005: $50 \mathrm{~mm} \quad$ 010: 100 mm 015: 150 mm 020: 200 mm 025: 250 mm 030: 300 mm
(5)	$\begin{array}{ll}\text { Electromagnetic Brake } & \text { Blank: Without Electromagnetic Brake } \\ & \mathbf{M}: \text { With Electromagnetic Brake }\end{array}$	
(6)	Power Supply Voltage	K: 24 VDC A: Single-Phase 100-115 VAC C: Single-Phase 200-230 VAC

Product Line

EZA4

\diamond Without Electromagnetic Brake

Stroke	24 VDC	Single-Phase 100-115 VAC	Single-Phase 200-230 VAC
	Model	Model	Model
50 mm	EZA4 $\square \mathbf{0 0 5 - K}$	EZA4 $\square \mathbf{0 0 5 - A}$	EZA4 $\square \mathbf{0 0 5 - C}$
100 mm	EZA4 $\square \mathbf{0 1 0 - K}$	EZA4 $\square \mathbf{0 1 0 - A}$	EZA4 $\square \mathbf{0 1 0 - C}$
150 mm	EZA4 $\square \mathbf{0 1 5 - K}$	EZA4 $\square \mathbf{0 1 5 - A}$	EZA4 $\square \mathbf{0 1 5 - C}$
200 mm	EZA4 $\square \mathbf{0 2 0 - K}$	EZA4 $\square \mathbf{0 2 0 - A}$	EZA4 $\square 020-\mathbf{C}$
250 mm	EZA4 $\square \mathbf{0 2 5 - K}$	EZA4 $\square \mathbf{0 2 5 - A}$	EZA4 $\square \mathbf{0 2 5 - C}$
300 mm	EZA4 $\square \mathbf{0 3 0 - K}$	EZA4 $\square \mathbf{0 3 0 - A}$	EZA4 $\square \mathbf{0 3 0 - C}$

- Enter the lead $\mathbf{D}(12 \mathrm{~mm})$ or $\mathbf{E}(6 \mathrm{~mm})$ in the box (\square) within the model name.
\diamond With Electromagnetic Brake

Stroke	24 VDC	Single-Phase 100-115 VAC	Single-Phase 200-230 VAC
	Model	Model	Model
50 mm	EZA4 $\square \mathbf{0 0 5 M - K}$	EZA4 $\square \mathbf{0 0 5 M - A}$	EZA4 \square O05M-C
100 mm	EZA4 $\square \mathbf{0 1 0 M - K}$	EZA4 $\square \mathbf{0 1 0 M - A}$	EZA4 $\square \mathbf{0 1 0 M - C}$
150 mm	EZA4 $\square \mathbf{0 1 5 M - K}$	EZA4 $\square \mathbf{0 1 5 M - A}$	EZA4 $\square \mathbf{0 1 5 M - C}$
200 mm	EZA4 $\square \mathbf{0 2 0 M - K}$	EZA4 $\square \mathbf{0 2 0 M - A}$	EZA4 $\square \mathbf{0 2 0 M - C}$
250 mm	EZA4 $\square \mathbf{0 2 5 M - K}$	EZA4 $\square \mathbf{0 2 5 M - A}$	EZA4 $\square \mathbf{0 2 5 M - C}$
300 mm	EZA4 $\square \mathbf{0 3 0 M - K}$	EZA4 $\square \mathbf{0 3 0 M - A}$	EZA4 \square 030M-C

- Enter the lead $\mathbf{D}(12 \mathrm{~mm})$ or $\mathbf{E}(6 \mathrm{~mm})$ in the box (\square) within the model name.
- EZA6
\diamond Without Electromagnetic Brake

Stroke	24 VDC	Single-Phase 100-115 VAC	Single-Phase 200-230 VAC
	Model	Model	Model
50 mm	EZA6 $\square \mathbf{0 0 5 - K}$	EZA6 $\square \mathbf{0 0 5 - A}$	EZA6 $\square \mathbf{0 0 5 - C}$
100 mm	EZA6 $\square \mathbf{0 1 0 - K}$	EZA6 $\square \mathbf{0 1 0 - A}$	EZA6 $\square \mathbf{0 1 0 - C}$
150 mm	EZA6 $\square \mathbf{0 1 5 - K}$	EZA6 $\square \mathbf{0 1 5 - A}$	EZA6 $\square \mathbf{0 1 5 - C}$
200 mm	EZA6 $\square \mathbf{0 2 0 - K}$	EZA6 $\square \mathbf{0 2 0 - A}$	EZA6 $\square \mathbf{0 2 0 - C}$
250 mm	EZA6 $\square \mathbf{0 2 5 - K}$	EZA6 $\square \mathbf{0 2 5 - A}$	EZA6 $\square \mathbf{0 2 5 - C}$
300 mm	EZA6 $\square \mathbf{0 3 0 - K}$	EZA6 $\square \mathbf{0 3 0 - A}$	EZA6 $\square \mathbf{0 3 0 - C}$

- Enter the lead $\mathbf{D}(12 \mathrm{~mm})$ or $\mathbf{E}(6 \mathrm{~mm})$ in the box (\square) within the model name.
\checkmark With Electromagnetic Brake

Stroke	24 VDC	Single-Phase 100-115 VAC	Single-Phase 200-230 VAC
	Model	Model	Model
50 mm	EZA6 $\square \mathbf{0 0 5 M - K}$	EZA6 $\square \mathbf{0 0 5 M - A}$	EZA6 \square 005M-C
100 mm	EZA6 $\square \mathbf{0 1 0 M - K}$	EZA6 $\square \mathbf{0 1 0 M - A}$	EZA6 $\square \mathbf{0 1 0 M - C}$
150 mm	EZA6 $\square \mathbf{0 1 5 M - K}$	EZA6 $\square \mathbf{0 1 5 M - A}$	EZA6 $\square \mathbf{0 1 5 M - C}$
200 mm	EZA6 $\square \mathbf{0 2 0 M - K}$	EZA6 $\square \mathbf{0 2 0 M - A}$	EZA6 $\square \mathbf{0 2 0 M - C}$
250 mm	EZA6 $\square \mathbf{0 2 5 M - K}$	EZA6 $\square \mathbf{0 2 5 M - A}$	EZA6 $\square \mathbf{0 2 5 M - C}$
300 mm	EZA6 $\square \mathbf{0 3 0 M - K}$	EZA6 $\square \mathbf{0 3 0 M - A}$	EZA6 $\square \mathbf{0 3 0 M - C}$

- Enter the lead $\mathbf{D}(12 \mathrm{~mm})$ or $\mathbf{E}(6 \mathrm{~mm})$ in the box (\square) within the model name.
-The following items are included in each product.
Cylinder, Controller, Mounting Bracket for Controller, Hexagonal Nut, User I/O Connector, Sensor I/O Connector, Operating Manual

General Specifications of Motor

This is the value after rated operation under normal ambient temperature and humidity.

Item	Specification
Insulation Resistance	$100 \mathrm{M} \Omega$ or more when 500 VDC megger is applied between the following places: -Motor case - Motor/Sensor windings -Motor case - Windings of electromagnetic brake (Only for electromagnetic brake type)
Dielectric Strength	Sufficient to withstand the following for 1 minute: -Motor case - Motor/Sensor windings $\quad 0.5$ kVAC 50 Hz -Motor case - Windings of electromagnetic brake (Only for electromagnetic brake type) $\quad 0.5 \mathrm{kVAC} 50 \mathrm{~Hz}$
Ambient Temperature	$0 \sim+40^{\circ} \mathrm{C}$ (non-freezing)
Ambient Humidity	85\% or less (non-condensing)
Note: - Do not measure insul and controller are co	ation resistance or perform the dielectric strength test while the cylinder nected.

Safety Standards and CE Marking

Power Supply Voltage	Product	CE Marking
24 VDC	Cylinder	EMC Directives
	Controller	
Single-Phase 100-115 VAC	Cylinder	Low Voltage Directives
Single-Phase 200-230 VAC	Controller	EMC Directives

- The EMC value changes according to the wiring and layout. Therefore, the final EMC level must be checked with the cylinder/controller incorporated in the user's equipment. If you require EMC data of cylinders or controllers, please contact the nearest Oriental Motor sales office.

- Machinery Directive (98/37/EC)

The cylinders, controllers and teaching pendants are designed and manufactured for use in general industrial equipment as an internal component, and therefore need not comply with the Machinery Directive. However, each product has been evaluated under the following standards to ensure proper operation:
EN ISO 12100-1, EN ISO 12100-2, EN 1050, EN 60204-1

\diamond Emergency Stop Function

The emergency stop circuit in the teaching pendant or controller is designed in accordance with the requirements of Category 1 under EN 954-1.
Refer to page 26 for a connection example that conforms to Stop Category 0 (non-controlled stop) under EN 60204-1.

\diamond Emergency Stop Circuit

The customer must provide an appropriate emergency stop circuit by conducting risk assessment based on your system.

Item	Specification
Insulation Resistance	$100 \mathrm{M} \Omega$ or more when 500 VDC megger is applied between the following places: -Motor case - Motor/Sensor windings -Motor case - Windings of electromagnetic brake (Only for electromagnetic brake type)
Dielectric Strength	Sufficient to withstand the following for 1 minute: -Motor case - Motor/Sensor windings EZA4: 1.0 kVAC 50 Hz EZA6: 1.5 kVAC 50 Hz -Motor case - Windings of electromagnetic brake (Only for electromagnetic brake type) 1.0 kVAC 50 Hz
Ambient Temperature	$0 \sim+40^{\circ} \mathrm{C}$ (non-freezing)
Ambient Humidity	85\% or less (non-condensing)
Note: - Do not measure insula and controller are con	lation resistance or perform the dielectric strength test while the cylin nnected.

Maximum Transportable Mass: Horizontal $30 \mathrm{~kg} /$ Vertical 14 kg Stroke: 50 to 300 mm (in 50 mm increments)

Drive Method ${ }^{\text {Ball }}$	Repetitive Positioning Accuracy [mm]		. 02 Res	[mm]	Maximum Load Moment [$\mathrm{N} \cdot \mathrm{m}$]		Mp: 7.5 My: 7.5 Mr: 2.6
Model	$\begin{aligned} & \hline \text { Lead } \\ & {[\mathrm{mm}]} \\ & \hline \end{aligned}$	Transportable Mass [kg] ${ }^{* 1}$		Thrus [N]	Push Force [N]	Electromagnetic Brake Holding Force [N]	$\begin{gathered} \text { Maximum Speed } \\ {[\mathrm{mm} / \mathrm{s}]} \\ \hline \end{gathered}$
		Horizontal	Vertical				
EZA4D \square-K	12		-			-	
EZA4D \square M-K	12	~ 15	~ 6.5	~ 70	100	70	600
EZA4E \square-K	6	30	-			-	
EZA4E \square M-K	6		~ 14		200	140	300

- Enter the stroke length in the box (\square) within the model name.
* 1 The value when an external guide is used. Moment calculations are required when transferring a load directly. See "Selection Calculations" on page 82
*2 Maximum speed of push-motion operation is $25 \mathrm{~mm} / \mathrm{s}$.

Product Number Code
EZA 4 D 030 M - K
(1)
(2) (3)
(4) (5)
(6)

Cylinder/Controller Combinations

Model names for cylinder and linear motion controller combinations are shown below.

Electromagnetic Brake	Model	Cylinder Model	Controller Model
Not equipped	EZA4D $\square-\mathbf{K}$	EZAM4D $\square K$	
	EZA4E $\square-K$	EZAM4E $\square K$	ESMC-K2
Equipped	EZA4D $\square \mathbf{M - K}$	EZAM4D \square MK	
	EZA4E $\square \mathbf{M - K ~}$	EZAM4E \square MK	

- Enter the stroke length in the box (\square) within the model name.

Check the Positioning Time

Check the (approximate) positioning time from the positioning distance.
For the operating speed and acceleration, refer to "selection calculations" on page 82.

EZA4D (Lead: 12 mm)
\diamond Horizontal Installation

- Positioning Distance - Positioning Time

\diamond Vertical Installation
- Positioning Distance - Positioning Time

\diamond Vertical Installation
- Positioning Distance - Positioning Time

Notes:
The positioning time in the graph does not include the settling time. Use a settling time of 0.15 s as a reference. (Settling time is adjustable by speed filter function.) The starting speed should be $6 \mathrm{~mm} / \mathrm{s}$ or less.

Push Force

EEZA4D (Lead: 12 mm)

EEA4E (Lead: 6 mm)

- When the cylinder is used in a vertical direction, an external force calculated by multiplying the weight of the carried object by the rate of gravitational acceleration must be considered. Measure the push force and set an appropriate push current. The graph shows a reference value of external force at horizontal operation.
- Operate the cylinder within the push current showing this graph.

Dimensions of Cylinder (Unit = mm

Cylinder Model: EZAM4D $\square \mathrm{K}$, EZAM4E $\square \mathrm{K}$ (Without electromagnetic brake)
EZAM4D \square MK, EZAM4E \square MK (With electromagnetic brake)

	Electromagnetic Brake	Numbers Specifiable in the Box (\square) within the cylinder Model Name					
		005	010	015	020	025	030
Stroke	Not Equipped/Equipped	50	100	150	200	250	300
L1	Not Equipped	292	342	392	442	492	542
	Equipped	327	377	427	477	527	577
L2	Not Equipped/Equipped	180.5	230.5	280.5	330.5	380.5	430.5
Mass [kg]	Not Equipped	1.7	1.8	1.9	2.0	2.1	2.2
	Equipped	1.9	2.0	2.1	2.2	2.3	2.4
DXF	Not Equipped	D1331	D1332	D1333	D1334	D1335	D1336
	Equipped	D1337	D1338	D1339	D1340	D1341	D1342

EZA Series Using $\alpha_{\text {step }}$ Motor

Maximum Transportable Mass: Horizontal 30 kg /Vertical 14 kg
Stroke: 50 to 300 mm (in 50 mm increments)
Specifications of Cylinder ROHS
C

Drive Method ${ }^{\text {Ball }}$	Repetitive Positioning Accuracy [mm] ± 0.02			[mm]	Maximum Load Moment [$\mathrm{N} \cdot \mathrm{m}$]		Mp: 7.5 Mr: 7.5 Mr: 2.6
Model	$\begin{aligned} & \text { Lead } \\ & {[\mathrm{mm}]} \end{aligned}$	Transportable Mass [kg]*		Thrust [N]	Push Force [N]	Electromagnetic Brake Holding Force [N]	Maximum Speed [mm/s]
		Horizontal	Vertical				
EZA4D \square - \square	12	~ 15	-	~ 70	100	-	600
EZA4D \square M- \square			~ 6.5			70	
EZA4ED- \square	6	~ 30	-	~ 140	200	-	300
EZA4E \square M- \square			~ 14			140	

Enter the stroke length in the box (\square) within the model name.
Enter the power supply voltage \mathbf{A} or \mathbf{C} in the box (\square) within the model name.
*1 The value when an external guide is used. Moment calculations are required when transferring a load directly. See "Selection Calculations" on page 82.
*2 Maximum speed of push-motion operation is $25 \mathrm{~mm} / \mathrm{s}$.

Product Number Code

(1)
(2) (3)
(4)
(5)
(6)

(1)	Series EZA: EZA Series
(2)	Cylinder Size 4: Frame Size $54 \mathrm{~mm} \times 38 \mathrm{~mm}$
(3)	Lead D: $12 \mathrm{~mm} \mathrm{E:}: 6 \mathrm{~mm}$
(4)	Stroke $\mathbf{0 0 5}(50 \mathrm{~mm}) \sim \mathbf{0 3 0}(300 \mathrm{~mm})$
(5)	Electromagnetic Brake Blank: Without Electromagnetic Brake
	$\mathbf{M}:$ With Electromagnetic Brake
(6)	Power Supply Voltage A: Single-Phase 100-115 VAC C: Single-Phase 200-230 VAC

Cylinder/Controller Combinations

Model names for cylinder and linear motion controller combinations are shown below.

Electromagnetic Brake	Model	Cylinder Model	Controller Model
Not equipped	EZA4D \square-A	EZAM4D \square A	ESMC-A2
	EZA4D \square-C	EZAM4D \square C	ESMC-C2
	EZA4E \square-A	EZAM4E \square A	ESMC-A2
	EZA4E \square-C	EZAM4E \square C	ESMC-C2
Equipped	EZA4D \square M-A	EZAM4D \square MA	ESMC-A2
	EZA4D \square M-C	EZAM4D \square MC	ESMC-C2
	EZA4E \square M-A	EZAM4E \square MA	ESMC-A2
	EZA4E \square M-C	EZAM4E \square MC	ESMC-C2

- Enter the stroke length in the box (\square) within the model name.

Check the Positioning Time

Check the (approximate) positioning time from the positioning distance.
For the operating speed and acceleration, refer to "selection calculations" on page 82.
EZA4D (Lead: 12 mm)
\diamond Horizontal Installation

- Positioning Distance - Positioning Time

EZA4E (Lead: 6 mm)
\diamond Horizontal Installation

- Positioning Distance - Positioning Time

Notes:
\diamond Vertical Installation

- Positioning Distance - Positioning Time

\diamond Vertical Installation
- Positioning Distance - Positioning Time

- The positioning time in the graph does not include the settling time. Use a settling time of 0.15 s as a reference. (Settling time is adjustable by speed filter function.)
- The starting speed should be $6 \mathrm{~mm} / \mathrm{s}$ or less.

Push Force

EZA4D (Lead: 12 mm)

EEZA4E (Lead: 6 mm)

Notes:
When the cylinder is used in a vertical direction, an external force calculated by multiplying the weight of the carried object by the rate of gravitational acceleration must be considered. Measure the push force and set an appropriate push current. The graph shows a reference value of external force at horizontal operation

- Operate the cylinder within the push current showing this graph.

Dimensions of Cylinder (Unit $=\mathrm{mm}$)

Cylinder Model: EZAM4D $\square \mathrm{A}$, EZAM4E $\square \mathrm{A}$, EZAM4D $\square \mathrm{C}, \mathrm{EZAM4E} \square \mathrm{C}$ (Without electromagnetic brake)
EZAM4D \square MA, EZAM4E \square MA, EZAM4D \square MC, EZAM4E \square MC (With electromagnetic brake)

	Electromagnetic Brake	Numbers Specifiable in the Box (\square) within the cylinder Model Name					
		005	010	015	020	025	030
Stroke	Not Equipped/Equipped	50	100	150	200	250	300
L1	Not Equipped	292	342	392	442	492	542
	Equipped	327	377	427	477	527	577
L2	Not Equipped/Equipped	180.5	230.5	280.5	330.5	380.5	430.5
Mass [kg]	Not Equipped	1.7	1.8	1.9	2.0	2.1	2.2
	Equipped	1.9	2.0	2.1	2.2	2.3	2.4
DXF	Not Equipped	D1331	D1332	D1333	D1334	D1335	D1336
	Equipped	D1337	D1338	D1339	D1340	D1341	D1342

EZA Series Using $\alpha_{\text {step }}$ Motor
EZA6: Frame Size $74 \mathrm{~mm} \times 52.5 \mathrm{~mm} 24 \mathrm{vDc}$
Maximum Transportable Mass: Horizontal $60 \mathrm{~kg} /$ Vertical 30 kg
Stroke: 50 to 300 mm (in 50 mm increments)
Specifications of Cylinder ROHS

Model	Lead [mm]	Transportable Mass [kg]*		Thrust [N]	Push Force [N$]^{* 2}$	Electromagnetic Brake Holding Force [N]	Maximum Speed [mm/s]
		Horizontal	Vertical				
EZA6D \square-K	12	~ 30	-	~ 200	400	-	600
EZA6D \square M-K			~ 15			200	
EZA6E \square-K	6	~ 60	-	~ 400	500	-	300
EZA6E \square M-K			~ 30			400	

- Enter the stroke length in the box (\square) within the model name.
* 1 The value when an external guide is used. Moment calculations are required when transferring a load directly. See "Selection Calculations" on page 82
*2 Maximum speed of push-motion operation is $25 \mathrm{~mm} / \mathrm{s}$.

Product Number Code
EZA 6 D 030 M - K
(1)
(2) (3)
(4) (5)
(6)

Series EZA: EZA Series

Cylinder Size 6: Frame Size $74 \mathrm{~mm} \times 52.5 \mathrm{~mm}$
Lead D: 12 mm E: 6 mm
Stroke $\mathbf{0 0 5}(50 \mathrm{~mm}) \sim \mathbf{0 3 0}(300 \mathrm{~mm})$
Electromagnetic Brake Blank: Without Electromagnetic Brake
\mathbf{M} : With Electromagnetic Brake
(6) Power Supply Voltage K: 24 VDC

Cylinder/Controller Combinations

Model names for cylinder and linear motion controller combinations are shown below.

Electromagnetic Brake	Model	Cylinder Model	Controller Model
Not equipped	EZA6D \square-K	EZAM6D $\square K$	
	EZA6E \square-K	EZAM6E $\square K$	
$* *$	Equipped	EZA6D $\square \mathbf{M}-\mathbf{K}$	
	EZA6E $\square \mathbf{M - K}$	EZAM6E \square MK	

- Enter the stroke length in the box (\square) within the model name.

Check the Positioning Time

Check the (approximate) positioning time from the positioning distance.
For the operating speed and acceleration, refer to "selection calculations" on page 82.

EZA6D (Lead: 12 mm)
\diamond Horizontal Installation

- Positioning Distance - Positioning Time

EZA6E (Lead: 6 mm)
\diamond Horizontal Installation

- Positioning Distance - Positioning Time

\diamond Vertical Installation
- Positioning Distance - Positioning Time

\diamond Vertical Installation
- Positioning Distance - Positioning Time

Notes:
The positioning time in the graph does not include the settling time. Use a settling time of 0.15 s as a reference. (Settling time is adjustable by speed filter function.) The starting speed should be $6 \mathrm{~mm} / \mathrm{s}$ or less.

Push Force

-EZA6D (Lead: 12 mm)

EEAGE (Lead: 6 mm)

- When the cylinder is used in a vertical direction, an external force calculated by multiplying the weight of the carried object by the rate of gravitational acceleration must be considered. Measure the push force and set an appropriate push current. The graph shows a reference value of external force at horizontal operation.
- Operate the cylinder within the push current showing this graph.

Dimensions of Cylinder (Unit $=\mathbf{m m}$)
 on the base surface

Cylinder Model: EZAM6D \square K, EZAM6E \square K (Without electromagnetic brake)
EZAM6D \square MK, EZAM6E \square MK (With electromagnetic brake)

	Electromagnetic Brake	Numbers Specifiable in the Box (\square) within the cylinder Model Name					
		005	010	015	020	025	030
Stroke	Not Equipped/Equipped	50	100	150	200	250	300
L1	Not Equipped	330.5	380.5	430.5	480.5	530.5	580.5
	Equipped	371	421	471	521	571	621
L2	Not Equipped/Equipped	200.5	250.5	300.5	350.5	400.5	450.5
Mass [kg]	Not Equipped	2.4	2.8	3.2	3.6	4.0	4.4
	Equipped	2.8	3.2	3.6	4.0	4.4	4.8
DXF	Not Equipped	D1343	D1344	D1345	D1346	D1347	D1348
	Equipped	D1349	D1350	D1351	D1352	D1353	D1354

EZA Series Using $\alpha_{\text {step }}$ Motor
EZA6: Frame Size $74 \mathrm{~mm} \times 52.5 \mathrm{~mm}$
Single-Phase 100-115 VAC Single-Phase 200-230 VAC

Maximum Transportable Mass: Horizontal 60 kg/Vertical 30 kg

Stroke: 50 to 300 mm (in 50 mm increments)
Specifications of Cylinder ROHS

Model	Lead [mm]	Transportable Mass [kg] ${ }^{* 1}$		Thrust [N]	Push Force$[\mathrm{N}]^{* 2}$	Electromagnetic Brake Holding Force [N]	Maximum Speed [mm/s]
		Horizontal	Vertical				
EZA6D \square - \square	12	~ 30	-	~ 200	400	-	600
EZA6D \square M- \square			~ 15			200	
EZA6E \square - \square	6	~ 60	-	~ 400	500	-	300
EZA6E \square M- \square			~ 30			400	

- Enter the stroke length in the box (\square) within the model name.

Enter the power supply voltage \mathbf{A} or \mathbf{C} in the box (\square) within the model name.

* 1 The value when an external guide is used. Moment calculations are required when transferring a load directly. See "Selection Calculations" on page 82.
*2 Maximum speed of push-motion operation is $25 \mathrm{~mm} / \mathrm{s}$.

Product Number Code

(1)
(2) (3)
(4)
(5)
(6)
(1) Series EZA: EZA Series
(2) Cylinder Size 6: Frame Size $74 \mathrm{~mm} \times 52.5 \mathrm{~mm}$
(3) Lead D: 12 mm E: 6 mm
(4) Stroke $\mathbf{0 0 5}(50 \mathrm{~mm}) \sim \mathbf{0 3 0}(300 \mathrm{~mm})$
(5) Electromagnetic Brake Blank: Without Electromagnetic Brake
\mathbf{M} : With Electromagnetic Brake
(b) Power Supply Voltage A: Single-Phase 100-115 VAC C: Single-Phase 200-230 VAC

Cylinder/Controller Combinations

Model names for cylinder and linear motion controller combinations are shown below.

Electromagnetic Brake	Model	Cylinder Model	Controller Model
Not equipped	EZA6D \square-A	EZAM6D \square A	ESMC-A2
	EZA6D \square-C	EZAM6D \square C	ESMC-C2
	EZA6E \square-A	EZAM6E \square A	ESMC-A2
	EZA6E \square-C	EZAM6E $\square C$	ESMC-C2
	EZA6D $\square \mathbf{M - A}$	EZAM6D \square MA	ESMC-A2
	EZA6D $\square \mathbf{M - C ~}$	EZAM6D \square MC	ESMC-C2
	EZA6E $\square \mathbf{M - A ~}$	EZAM6E $\square M A$	ESMC-A2
	EZA6E $\square \mathbf{M - C ~}$	EZAM6E \square MC	ESMC-C2

- Enter the stroke length in the box (\square) within the model name.

Check the Positioning Time

Check the (approximate) positioning time from the positioning distance.
For the operating speed and acceleration, refer to "selection calculations" on page 82.
EZA6D (Lead: 12 mm)
\diamond Horizontal Installation

- Positioning Distance - Positioning Time

EEA6E (Lead: 6 mm)
\diamond Horizontal Installation

- Positioning Distance - Positioning Time

\diamond Vertical Installation
- Positioning Distance - Positioning Time

\diamond Vertical Installation
- Positioning Distance - Positioning Time

- The positioning time in the graph does not include the settling time. Use a settling time of 0.15 s as a reference. (Settling time is adjustable by speed filter function.) - The starting speed should be $6 \mathrm{~mm} / \mathrm{s}$ or less.

Push Force

-EZA6D (Lead: 12 mm)

EEAAE (Lead: 6 mm)

- When the cylinder is used in a vertical direction, an external force calculated by multiplying the weight of the carried object by the rate of gravitational acceleration must be considered. Measure the push force and set an appropriate push current. The graph shows a reference value of external force at horizontal operation.
- Operate the cylinder within the push current showing this graph.

Dimensions of Cylinder (Unit $=\mathrm{mm}$)
 on the base surface

High Power Motorized Cylinders

EZ limo PWA II Series

With the use of gears and a ball screw, along with the folded motor configuration, the PWAII Series cylinders achieve a compact size and provide high thrust force. With the $\alpha_{\text {STEP }}$ motor used as a motor of the cylinder, this cylinder offers a full range of convenient functions such as teaching, area output and absolute mode.

Features

Achieving a Compact Size and High Thrust Force

The PWAII Series cylinders provide high thrust force. The maximum thrust forces of the PWA6 and PWA8 are 1000 N (600 N in pushmotion operation) and 5000 N (3500 N in push-motion operation), respectively.
The PWA6 is 256 mm in total length, with 1000 N .

The PWA8 is 308 mm in total length, with 5000 N .

- Short Cycle Operation That Can Be Achieved by LinkedMotion Operations
The time required for an operating cycle can be reduced by linking the pressure speed and the approach speed (when the rod approaches the load).

The cylinder moves from the home position to the load at high speed.

The cylinder is operated at the pressure speed for the distance in which pressure must be applied.

- High Accuracy and Positioning

With the $\boldsymbol{Q S T E P}_{\text {ST }}$ motor and the ball screw mechanism, a highly accurate pressurized positioning can be performed. The repetitive positioning accuracy is $\pm 0.02 \mathrm{~mm}$.

A Wide Range of Operating Patterns

Push-Motion Operation

 In this operation, the cylinder can keep the rod pushed against a load, etc.

Pressurized Positioning Operation In this operation, the cylinder can perform high-accuracy positioning while applying pressure to the rod.

Built-In Home/Limit Sensors

The built-in home/limit sensors in the cylinder save the customer from the trouble of having to install sensors.

-Built-In Guide Mechanism in Cylinder

The built-in guide mechanism in the cylinder eliminates the need to provide an external guide mechanism before using the cylinder.

Note:
When a moment load is applied in a direction other than that in which the rod moves straight, provide an external guide mechanism.

(1)	Series PWA: PWA II Series	
(2)	$\begin{array}{ll}\text { Cylinder Size } & \begin{array}{l}\text { 6: Frame Width } 87 \mathrm{~mm} \\ \\ \text { 8: Frame Width } 130 \mathrm{~mm}\end{array}\end{array}$	
(3)	Lead $\mathbf{H}: 5 \mathrm{~mm}$ J: 1.6 mm	
(4)	Stroke 010:100 mm	
(5)	Electromagnetic Brake Blank: Without Electromagnetic Brake $\mathbf{M}:$ With Electromagnetic Brake	
(6)	Motor R: Folded Type	
(7)	Power Supply Voltage A: Single-Phase 100-115 VAC C: Single-Phase 200-230 VAC	

Product Line

\diamond Without Electromagnetic Brake

Stroke	Single-Phase 100-115 VAC	Single-Phase 200-230 VAC
	Model	Model
100 mm	PWA6H010R-A	PWA6HO10R-C
	PWA8JO10R-A	PWA8JO10R-C

\checkmark With Electromagnetic Brake

Stroke	Single-Phase 100-115 VAC	Single-Phase 200-230 VAC
	Model	Model
100 mm	PWA6H010MR-A	PWA6H010MR-C
	PWA8J010MR-A	PWA8J010MR-C

- The following items are included in each product.

Cylinder, Controller, Mounting Bracket for Controller, User I/O Connector, Sensor I/O
Connector, Operating Manual

General Specifications of Motor General specifications of controller \rightarrow Page 65

This is a value after rated operation under normal ambient temperature and humidity.

Item	Specification
Insulation Resistance	$100 \mathrm{M} \Omega$ or more when 500 VDC megger is applied between the following places: -Motor case - Motor/Sensor windings -Motor case - Windings of electromagnetic brake (Only for electromagnetic brake type)
Dielectric Strength	Sufficient to withstand the following for 1 minute: -Motor case - Motor/Sensor windings $1.5 \mathrm{kVAC} 50 \mathrm{~Hz}$ -Motor case - Windings of electromagnetic brake (Only for electromagnetic brake type) 1.0 kVAC 50 Hz
Ambient Temperature	$0 \sim+40^{\circ} \mathrm{C}$ (non-freezing)
Ambient Humidity	85\% or less (non-condensing)
Note:	

System Configuration

- Controller Mode

No.	Product Name	Overview	Page
(1)	Motor Cables	This dedicated cable connects the cylinder and linear motion controller (1 to 20 m). Be sure to purchase this cable.	74
(2)	Teaching Pendant	Various data can be set and operated at your fingertips. The cable length is 5 m .	75
(3)	Data Editing Software	Various data can be set and edited on a personal computer. A dedicated communication cable is included (5 m).	75
(4)	Sensor Extension Cables	Cable for connecting the linear motion controller and sensors ($1 \mathrm{~m}, 2 \mathrm{~m}$).	74
(5)	Connector - Terminal Block Conversion Unit	Set of terminal block and cable for connecting the linear motion controller and sensors (1 m).	76
(6)	I/O Cables	Cable for connecting the linear motion controller and programmable controller ($1 \mathrm{~m}, 2 \mathrm{~m}$).	77
(7)	Connector - Terminal Block Conversion Unit	Set of terminal block and cable for connecting the linear motion controller and programmable controller (1 m).	76
(8)	Battery Set	Required for use in the absolute mode.	77
(9)	DIN Rail Mounting Plate	Use this when installing the linear motion controller to a DIN rail.	78

- Example of System Configuration

(Sold separately)			(Sold separately)		
PWA II Series	Motor Cable (2 m)	Teaching Pendant		I/O Cable (1 m)	Sensor Extension Cable (2 m)
PWA6H010R-A	CCO20ES-2	EZT 1	十	CC36D1-1	CC20D2-1

-The system configuration shown above is an example. Other combinations are available.

- Driver Mode

An example of a single-axis system configuration with the EMP400 Series controller.

(4)Connector - Terminal Block Conversion Unit
$(\rightarrow$ Page 76)

(5)Battery Set
$(\rightarrow$ Page 77)

(6)DIN Rail

Mounting Plate $(\rightarrow$ Page 78)

No.	Product Name	Overview	Page
(1)	Motor Cables	This dedicated cable connects the cylinder and linear motion controller (1 to 20 m$)$. Be sure to purchase this cable.	74
(2)	Controller	This controller gives commands needed to drive the cylinder.	$*$
(3)	Driver - Sensor Cable	Cable for connecting the linear motion controller and EMP Series controller (0.5 m).	77
(4)	Connector - Terminal Block Conversion Unit	Set of terminal block and cable for connecting the EMP Series controller and programmable controller (1 m).	76
(5)	Battery Set	Required for use in the absolute mode.	77
(6)	DIN Rail Mounting Plate	Use this when installing the linear motion controller to a DIN rail.	78

-Example of System Configuration

(Sold separately)

PWAII Series	Motor Cable $(2 \mathrm{~m})$
PWA6H010R-A	CCO20ES-2

Controller	$\begin{aligned} & \text { Driver - Sensor Cable } \\ & (0.5 \mathrm{~m}) \end{aligned}$	Connector - Terminal Bloct Conversion Unit (1 m)
EMP401-1	CC005EZ6-EMPD	CC50T 1

The system configuration shown above is an example. Other combinations are available.

Specifications of Cylinder

| Drive Method | Ball Screw + Gear | Repetitive Positioning Accuracy [mm] | ± 0.02 | Resolution [mm] | 0.01 | Stroke [mm] 100 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Model	Lead [mm]	Positioning Operation		Push Operation		Maximum Holding Force		
		Maximum Thrust Force [N]	Speed Range [mm/s]	Push Force [N]	Speed Range [mm/s]	Power ON	Power OFF	Electromagnetic Brake
PWA6H010R- \square	5	1000	~ 50	~ 600	~ 6	1000	50	-
		200	~ 200					
PWA6H010MR- \square		1000	~ 50					1000
		200	~ 200					

- Enter the power supply voltage \mathbf{A} or \mathbf{C} in the box (\square) within the model name.

Product Number Code

(1)	Series PWA: PWA II Series
(2)	Cylinder Size 6: Width 87 mm
(3)	Lead H:5 mm
(4)	Stroke $\mathbf{0 1 0}(100 \mathrm{~mm})$
(5)	Electromagnetic Brake Blank: Without Electromagnetic Brake
M: With Electromagnetic Brake	

Push Force

\diamond PWA6

This is a representative value at a speed of $6 \mathrm{~mm} / \mathrm{s}$ max
Notes:

- When the cylinder is used in a vertical direction, an external force calclurated by multiplying the weight of the carried object by the rate of garavitational acceleration must be considered.
Measure the push force and set an appropriate push current. The graph shows a reference value of external force at horizontal operation.
- Operate the cylinder with a push current of 35% or less. If the push current exceeds 35%, the life of this product will be affected by excess thrust force due to the impact and variations that occur upon push motion.

Specifications of Sensor

Item	Model: EE-SX671A (OMRON)
Power Supply	5 to 24 VDC $\pm 10 \%$, ripple $(\mathrm{p}-\mathrm{p}) 10 \%$ or less
Current Consumption	35 mA or less
Control Output	NPN open-collector output, 5 to $24 \mathrm{VDC}, 100 \mathrm{~mA}$ or less Residual voltage 0.8 V or less (at load current of 100 mA$)$
Indicator LED	Detection display (red)
Logic	Normally open/normally closed (switchable, depending on connection)
Type	Photomicro sensor
Quantity	3 pieces, built-in
Movement	Possible

\square shows the electromagnetic brake.

*At standard sensor position

Specifications of Cylinder

| Drive Method | Ball Screw + Gear | | Repetitive Positioning Accuracy $[\mathrm{mm}]$ | ± 0.02 | Resolution [mm] 0.001 | Stroke [mm] 100 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Model	$\begin{aligned} & \text { Lead } \\ & {[\mathrm{mm}]} \end{aligned}$	Positioning Operation		Push Operation		Maximum Holding Force		
		Maximum Thrust Force [N]	Speed Range [mm/s]	Push Force [N]	Speed Range [mm/s]	Power ON	Power OFF	Electromagnetic Brake
PWA8J010R- \square	1.6	5000	~ 9	~ 3500	~ 6	5000	250	-
		1000	~ 70					
PWA8J010MR- \square		5000	~ 9					3500
		1000	~ 70					

- Enter the power supply voltage \mathbf{A} or \mathbf{C} in the box (\square) within the model name.

Product Number Code

$\frac{\text { PWA }}{(1)} \frac{8}{(2)} \frac{\mathbf{J}}{(3)} \frac{010}{(4)} \frac{M}{(5)} \frac{R}{6}=\frac{A}{(7)}$
(1) Series PWA: PWAII Series

Cylinder Size 8: Width 130 mm
Lead J: 1.6 mm
Stroke 010 (100 mm)
Electromagnetic Brake Blank: Without Electromagnetic Brake
\mathbf{M} : With Electromagnetic Brake
Motor Offset R: Motor Offset Mount Type
Power Supply Voltage A: Single-Phase 100-115 VAC
C: Single-Phase 200-230 VAC

Cylinder/Controller Combinations

Model names for cylinder and linear motion controller combinations are shown below.

Electromagnetic Brake	Model	Cylinder Model	Controller Model
Not equipped	PWA8J010R-A	PWAM8J010RA	ESMC-A2
	PWA8J010R-C	PWAM8J010RC	ESMC-C2
Equipped	PWA8J010MR-A	PWAM8J010MRA	ESMC-A2
	PWA8J010MR-C	PWAM8J010MRC	ESMC-C2

Push Force

This is a representative value at a speed of $6 \mathrm{~mm} / \mathrm{s}$ max
Notes:

- When the cylinder is used in a vertical direction, an external force calclurated by multiplying the weight of the carried object by the rate of garavitational acceleration must be considered.
Measure the push force and set an appropriate push current. The graph shows a reference value of external force at horizontal operation.
- Operate the cylinder with a push current of 35% or less. If the push current exceeds 35%, the life of this product will be affected by excess thrust force due to the impact and variations that occur upon push motion.

Specifications of Sensor

Item	Model: EE-SX671A (OMRON)
Power Supply	5 to 24 VDC $\pm 10 \%$, ripple $(\mathrm{p}-\mathrm{p}) 10 \%$ or less
Current Consumption	35 mA or less
Control Output	NPN open-collector output, 5 to $24 \mathrm{VDC}, 100 \mathrm{~mA}$ or less Residual voltage 0.8 V or less (at load current of 100 mA$)$
Indicator LED	Detection display (red)
Logic	Normally open/normally closed (switchable, depending on connection)
Type	Photomicro sensor
Quantity	3 pieces, built-in
Movement	Possible

Cylinder Model	Electromagnetic Brake	Mass $[\mathrm{kg]}$	DXF	
PWAM8J010R \square	Not Equipped	16.2	D849	D851
PWAM8J010MR \square	Equipped	16.6	D850	D852

＊A and C represent the power supply voltage．
－Enter the power supply voltage A or C in the box（ \square ）within the model name．

SPV/EZCII/EZA/PWAII Series Common Controller

Specifications of Controller

- Controller Mode

Item			Controller Model		
			ESMC-K2	ESMC-A2	ESMC-C2
Type			Stored data type		
Power Supply Input	Control Power		$24 \mathrm{VDC} \pm 5 \% \quad 1.0 \mathrm{~A}$		
	Main Power	Voltage	$24 \mathrm{VDC} \pm 10 \%$	Single-Phase 100-115 VAC - 15~+10\%	Single-Phase 200-230 VAC - 15~+10\%
		Frequency	-	$50 / 60 \mathrm{~Hz}$	
		Current	$4.0 \mathrm{~A}^{* 1}$	$6.0 \mathrm{~A}^{* 1}$	3.5 A*
Positioning Data	Setting Mode		Absolute mode (absolute-position specification), Incremental mode (relative-position specification)		
	Number		63		
	Setting Method		Data is set using the accessory teaching pendant (EZT 1) or data editing software (EZED2) (Stored in EEPROM).		
	Mode		Selective positioning Sequential positioning		
	Travel Amount Setting Range		$-83886.08 \sim+83886.07 \mathrm{~mm}$ (value set in units of 0.01 mm)		
Positioning	Starting Speed Setting Range		$0.01 \sim 200.00 \mathrm{~mm} / \mathrm{s}$ (value set in units of $0.01 \mathrm{~mm} / \mathrm{s}$)		
Control*2	Operating Speed Setting Range		$0.01 \sim 1500.00 \mathrm{~mm} / \mathrm{s}$ (value set in units of $0.01 \mathrm{~mm} / \mathrm{s}$)		
	Acceleration/Deceleration Rate Setting Range		$0.01 \sim 20.00 \mathrm{~m} / \mathrm{s}^{2}$ (value set in units of $0.01 \mathrm{~m} / \mathrm{s}^{2}$)		
Control Mode			- External input mode (EXT): In this mode, operation by external signal, command position, $I / 0$ condition and alarm condition can be monitored. - Program mode (PRG): In this mode, operation data can be created, changed or cleared. - Parameter mode (PAR): In this mode, operation parameters and function setting parameters can be set or changed. - Test mode (TST): In this mode, manual operation and I/O check can be performed.		
Operation Mode			Positioning operation, Return to home operation, Linked operation (a maximum of 4 data), Continuous operation		
Input Signa//Input Mode			START, STOP, HOME/PRESET, FREE, M0~M5, REQ, ACL/CK 24 VDC Photocoupler input, Input resistance $4.7 \mathrm{k} \Omega$ FWD, RVS 5 VDC Photocoupler input, Input resistance 180Ω or 24 VDC Photocoupler input, Input resistance $2.7 \mathrm{k} \Omega$ +LS, -LS, HOMELS 24 VDC Photocoupler input, Input resistance $4.7 \mathrm{k} \Omega$		
Output Signal/Output Mode			ALM, END/OUTR, MOVE, AREA/OUTO, OUT1 Photocoupler, Open-collector output (24 VDC, 10 mA or less) ASG1, BSG1 Photocoupler, Open-collector output ($24 \mathrm{VDC}, 15 \mathrm{~mA}$ or less) ASG2, BSG2 Line driver output		
Protective Function			Excessive position deviation, Overcurrent protection, Overvoltage protection, Overheat protection, Overload, Sensor error, Overspeed, Nonvolatile memory error, etc.		
Indicator (LED)			PWR, ALM	PWR, ALM, CHARGE	
Cooling Method			Natural ventilation		
Mass			0.44 kg	0.77 kg	

- Driver Mode

Item		Controller Model		
		ESMC-K2	ESMC-A2	ESMC-C2
$\begin{array}{ll}\text { Power Supply } & \\ \text { Control Power } \\ \text { Input }\end{array}$		$24 \mathrm{VDC} \pm 5 \% \quad 1.0 \mathrm{~A}$[Controller only: 0.5 A (Take into account safety margin of +0.2 A for the teaching pendant, and/or +0.3 A for the electromagnetic brake type.)]		
	Voltage	$24 \mathrm{VDC} \pm 10 \%$	Single-Phase 100-115 VAC - 15~+10\%	Single-Phase 200-230 VAC - 15~+10\%
	Frequency	-	$50 / 60 \mathrm{~Hz}$	
	Current	4.0 A*	$6.0 \mathrm{~A}^{* 1}$	$3.5 \mathrm{~A}^{* 1}$
Maximum Response Frequency		1-pulse input mode, 2-pulse input mode: 80 kHz , Phase difference input mode: 20 kHz		
Operation Mode		Return to home operation, Pulse input operation (1-pulse input mode, 2-pulse input mode, Phase difference input mode)		
Input Signal/Input Mode		ACL/CK, FREE, C.OFF, HOME/PRESET, REQ, HMSTOP 24 VDC Photocoupler input, Input resistance $4.7 \mathrm{k} \Omega$ FP, RP 5 VDC Photocoupler input, Input resistance 180Ω or 24 VDC Photocoupler input, Input resistance $2.7 \mathrm{k} \Omega$ +LS, -LS, HOMELS 24 VDC Photocoupler input, Input resistance $4.7 \mathrm{k} \Omega$		
Output Signal/Output Mode		MOVE, END/OUTR, ALM, TIM/OUT0, OUT1 Photocoupler, Open-collector output (24 VDC, 10 mA or less) ASG1, BSG1 Photocoupler, Open-collector output (24 VDC, 15 mA or less) ASG2, BSG2 Line driver output		
Protective Function		Excessive position deviation, Overcurrent protection, Overvoltage protection, Overheat protection, Overload, Sensor error, Overspeed, Nonvolatile memory error, etc.		
Indicator (LED)		PWR, ALM	PWR, ALM, CHARGE	
Cooling Method		Natural ventilation		
Mass		0.44 kg	0.77 kg	

[^4]
General Specifications of Controller

This is the value after rated operation under normal ambient temperature and humidity.

Item	Specification
Insulation Resistance	$100 \mathrm{M} \Omega$ or more when 500 VDC megger is applied between the following places: - FG - Main power supply terminal - FG - I/O connector
Dielectric Strength	Sufficient to withstand the following for 1 minute: $\begin{array}{lll}\text { - FG - Main power supply terminal } & 0.5 \mathrm{kVAC} & 50 \mathrm{~Hz} \\ \cdot & 0.5 \mathrm{kVAC} & 50 \mathrm{~Hz}\end{array}$
Ambient Temperature	$0 \sim+40^{\circ} \mathrm{C}$ (non-freezing)
Ambient Humidity	85\% or less (non-condensing)
Note: Do not measure insulation resistance or perform the dielectric strength test while the linear slide and controller are connected.	

Item	Specification
Insulation Resistance	$100 \mathrm{M} \Omega$ or more when 500 VDC megger is applied between the following places: - I/O connector - Main power supply terminal, Motor connector, Battery connector - Control power supply terminal - Main power supply terminal, Motor connector, Battery connector - PE - Main power supply terminal, Motor connector, Battery connector
Dielectric Strength	Sufficient to withstand the following terminals for 1 minute: - Signal I/O, Control power supply - Main power supply 1.8 kVAC - Signal I/O, Control power supply - Motor output 1.8 kVAC - Signal I/O, Control power supply - Battery input 1.8 kVAC - PE - Main power supply 1.5 kVAC - PE - Motor output 1.5 kVAC - PE - Battery input 1.5 kVAC
Ambient Temperature	$0 \sim+40^{\circ} \mathrm{C}$ (non-freezing)
Ambient Humidity	85\% or less (non-condensing)
Note: Do not measure slide and control	sulation resistance or perform the dielectric strength test while the linear r are connected.

Controller Dimensions (Unit = mm)

24 VDC

Controller Model: ESMC-K2
Mass: 0.44 kg DXF D853

Slit

- Mounting Bracket

(2 pieces, included)

- Control I/O Connector (Included) Case: 54331-1361 (MOLEX) Connector: 54306-3619 (MOLEX)
- I/O Connector for Sensor (Included) Case: 54331-1201 (MOLEX) Connector: 54306-2019 (MOLEX)
*The center of the DIN rail when a DIN rail mounting plate (PADPO 1, sold separately) is used for installation.

Single-Phase 100-115 VAC/Single-Phase 200-230 VAC
Controller Model: ESMC-A2, ESMC-C2

- Control I/O Connector (Included) Case: 54331-1361 (MOLEX) Connector: 54306-3619 (MOLEX)
- I/O Connector for Sensor (Included) Case: 54331-1201 (MOLEX) Connector: 54306-2019 (MOLEX)

[^5]
Connection and Operation

- Names and Functions of Controller Parts

1 Teaching Pendant Switch

Indication	Function
PENDANT	Enable/disable the teaching pendant ON: Enable the teaching pendant OFF: Disable the teaching pendant (The emergency stop button on the teaching pendant is also disabled.)
2 Mode Switch	
Indication	Invalid (not used)
4	Switch ABS/INC ON: Absolute mode OFF: Incremental mode
2	Set pulse input mode (in driver mode) ON: 1-pulse input mode OFF: 2-pulse input mode
1	Switch modes ON: Driver mode OFF: Controller mode

- All switches are set to OFF at the time of shipment.

3 LED Indicator

Indication	Color	Name
PWR	Green	Control power supply indicator
ALM	Red	Alarm indicator

4 Sensor I/O Connector

Indication	Input	Pin No.	Signal Name	Function
SENSOR	Input	1	IN-COM2	Power supply for sensor
		11		
		19		
		13	+LS	+ coordinate limit sensor
		14	-LS	-coordinate limit sensor
		15	HOMELS	Mechanical home sensor

* Make sure the linear slide model name on the controller key matches the model name of the connected linear slide. If the names do not match, the linear slide cannot be operated as specified.

5 I/O Connector

- Controller Mode

- Driver Mode

Indication	1/0	Pin No.	Signal Name	Function
	Input	18	IN-COM1***2	Power supply for input signals
		19	GND	Power supply for I/O signals
		1	OUT-COM*	Power supply for output signals
1/0	Output	2	ALM	This signal is output when a protective function has been activated.
		3	MOVE	This signal is output while the cylinder is operating.
		4	$\begin{aligned} & \text { END/ } \\ & \text { OUTR } \end{aligned}$	END: This signal is output when a positioning operation or return to home operation has been completed. OUTR: Output the current position
		5	TIM/ OUTO	TIM: This signal is output when the excitation sequence is at step " 0. " OUTO: Output the current position
		6	OUT1	Output the current position
		20	ASG1	A-phase pulse output (Open-collector)
		21	BSG1	B-phase pulse output (Open-collector)
		22	ASG2	
		23	$\overline{\text { ASG2 }}$	A-phase pulse output (Line driver)
		24	BSG2	
		25	BSG2	B-phase pulse output (Line driver)
	Input	8	ACL/CK	ACL: Cancel the protective function currently active CK: Output the current position
		9	FREE	Stop motor excitation and release the electromagnetic brake
		10	C.OFF	Stop motor excitation and hold the electromagnetic brake
		11	HMSTOP	Stop return to home operation
		17	$\begin{gathered} \text { HOME/ } \\ \text { PRESET** } \end{gathered}$	HOME: Start return to home operation PRESET: Preset the current position
		30	REQ	Request the current position output
		31	FP+	Operation command pulse input (The operation command pulse input in the + coordinate direction in the 2-pulse input mode)
		32	FP-	
		33	P24-FP	
		34	RP+	Direction of movement input (The operation command pulse input in the - coordinate direction in the 2-pulse input mode)
		35	RP-	
		36	P24-RP	

* 1 Connect this signal to 24 VDC if your contoroller is used in the NPN mode, or connect it to ground if the controller is used in the PNP mode.
* 2 Connect this signal even when only output signals are used.
* 3 Connect this signal to ground if your controller is used in the NPN mode, or connect it to 24 VDC if the controller is used in the PNP mode.
* 4 Teaching pendant (EZT 1) or data editing software (EZED2) is required when switching the HOME/PRESET input or changing parameters in the driver mode.

- Connection Diagram

*For the circuit configuration, refer to "Emergency stop circuit" below.

- Emergency Stop Circuit

If an emergency stop function is used, provide a circuit that will cut off the main power supply and control power supply upon pressing of the emergency stop button.
When providing an emergency stop circuit, determine an appropriate circuit configuration based on the result of risk assessment of the equipment you are manufacturing.
Of the risk assessment result indicates that no emergency stop function is necessary, the circuit configuration shown in "Connection example when an emergency stop function is not used" can be used.
Do not connect the emergency stop output terminal directly to GND (0 V). Doing so will blow the overcurrent protection fuse in the teaching pendant, in which case the emergency stop can no longer be canceled.
-Provide a measure on the machine side so that the machine will operate safely when the motorized actuator is stopped.

\diamond Connection Example When an Emergency Stop Function is Used

A connection example of controller power system and emergency stop system is given below, which conforms to Category 1 under the EN 954-1 safety standard and Stop Category 0 under the EN 60204-1 safety standard.

\diamond Connection Example When an Emergency Stop Function is Not Used

Note:
When the emergency stop button (SB3) on the teaching pendant is pressed, an emergency stop alarm (Err68) will generate and the motorized actuator will stop operating. This stopping method is based on software control. It does not meet the emergency stop requirements specified in safety standards.

\diamond Power Source

- Two types of power source, main power and control power are required. Both power sources must at least have the specified capacity.
Specifications of controller \rightarrow Page 64
- If the power capacity is insufficient, motor output may drop, which may cause the linear slide to malfunction (due to lack of thrust force).

\diamond Notes on Wiring

- Wire the control I/O signal lines over as short a distance as possible, using a shield cable [AWG28 ($0.08 \mathrm{~mm}^{2}$) or thicker].
- Be sure to use an accessory motor cable to wire the linear slide and controller.
- Wire the control I/O signal lines by providing a minimum distance of 30 cm from the power lines (large-current circuits such as the power supply line and motor line). Do not wire the control I/O signal lines with the power lines in the same duct or bundle them together.

\diamond Controller Mode

- Sink Logic (NPN) Specification

*1 For connection of 31 to 36 pins, refer to "FWD (FP) and RVS (RP) Signals" as shown below.
*2 An accessory sensor set is also available (sold separately.)
*3 Connect this line if the normally closed (NC) logic is used.
\diamond FWD (FP) and RVS (RP) Signals

When connecting to sink logic (NPN) specification of 5 VDC

When connecting to a line driver output circuit

\diamond Controller Mode

- Source Logic (PNP) Specification

\checkmark FWD (FP) and RVS (RP) Signals

When connecting to source logic (PNP) specification of 5 VDC

When connecting to a line driver output circuit

\diamond Driver Mode

- Sink Logic (NPN) Specification

*1 For connection of 31 to 36 pins, refer to "FWD (FP) and RVS (RP) Signals" as shown below. *2 An accessory sensor set is also available (sold separately.)
*3 Connect this line if the normally closed (NC) logic is used.
\diamond FWD (FP) and RVS (RP) Signals

When connecting to sink logic (NPN) specification of 5 VDC

When connecting to a line driver output circuit

\diamond Driver Mode

- Source Logic (PNP) Specification

* F For connection of 31 to 36 pins, refer to "FWD (FP) and RVS (RP) Signals" as shown below.
*2 An accessory sensor set is also available (sold separately.)
$* 3$ Connect this line if the normaly closed (NC) logic is used.
\diamond FWD (FP) and RVS (RP) Signals

When connecting to source logic (PNP) specification of 5 VDC

When connecting to a line driver output circuit

Accessories (Sold separately)

Motor Cables RoHS

These dedicated cables are used to connect the linear slide or the cylinder with the controller. Use flexible cables in applications where the cables will flex repeatedly. (For both the electromagnetic brake type and non-electromagnetic brake type.)

- Product Line

\triangle SPV/EZCII/EZA/PWAII Series

For 24 VDC, Single-Phase 100-115 VAC, Single-Phase 200-230 VAC*

* Only for EZCII and EZA Series

Standard Cables (Without electromagnetic brake/with electromagnetic brake)

Length (L)	Model
1 m	CCO10ES-2
2 m	CCO20ES-2
3 m	CCO30ES-2
5 m	CCO50ES-2
7 m	CCO70ES-2
10 m	CC100ES-2
$15 \mathrm{~m}^{*}$	CC150ES-2
$20 \mathrm{~m}^{*}$	CC200ES-2

* Keep the cable length to 10 m or below for 24 VDC linear slides.

Flexible Cables (Without electromagnetic brake/with electromagnetic brake)

Length (L)	Model
1 m	CCO10ESR-2
2 m	CCO20ESR-2
3 m	CC030ESR-2
5 m	CCO50ESR-2
7 m	CC070ESR-2
10 m	CC100ESR-2
$15 \mathrm{~m}^{*}$	CC150ESR-2
$20 \mathrm{~m}^{*}$	CC200ESR-2

* Keep the cable length to 10 m or below for 24 VDC linear slides.
- Dimensions (Unit = mm)

CC $\square E S$-2/CC \square ESR-2

\diamond SPV/PWAII Series
For Single-Phase 200-230 VAC

Standard Cables (Without electromagnetic brake/with electromagnetic brake)

Length (L)	Model
1 m	CCO10ES-3
2 m	CCO20ES-3
3 m	CCO30ES-3
5 m	CCO50ES-3
7 m	CCO70ES-3
10 m	CC100ES-3
15 m	CC150ES-3
20 m	CC200ES-3

Flexible Cables (Without electromagnetic brake/with electromagnetic brake)

Length (L)	Model
1 m	CC010ESR-3
2 m	CCO20ESR-3
3 m	CC030ESR-3
5 m	CC050ESR-3
7 m	CC070ESR-3
10 m	CC100ESR-3
15 m	CC150ESR-3
20 m	CC200ESR-3

CC \square ES-3/CC \square ESR- 3

Sensor Extension Cables (Applicable product: SPV/EZCI/PWAII Series) ROHS

These cables are used for connection between the controller and the sensors.

Product Line
Model
CC20D1-1
CC20D2-1

- Dimensions (Unit = mm)

CC20D \square - 1
Conductor: AWG28 ($0.08 \mathrm{~mm}^{2}$)

Teaching Pendant

The teaching pendant allows you to set and operate various data by hand, as well as to monitor the set data, current position and I/O status in real time.

Product Line	
Model	EZTI

Specifications

Display	LCD with 2-colored back light
Cable Length	5 m
Mass	0.37 kg
Ambient Temperature	$0 \sim+40^{\circ} \mathrm{C}$ (non-freezing)

- Dimensions (Unit = mm)
©XP D416

Data Editing Software RoHS

- Teaching Pendant (EZT I)/Data Editing Software (EZED2) Function Comparison Table

Function	Item	
	Teaching Pendant (Model: EZT 1)	Data Editing Software (Model: EZED2)
Cable Length	5 m	$5 \mathrm{~m}^{* 1}$
Display	LCD 17 characters $\times 4$ lines	PC screen
Emergency Stop Button	\bigcirc	\times
Operation Data Setting	\bigcirc	\bigcirc
Parameter Setting	\bigcirc	\bigcirc
Teaching Function (Direct/Remote)	\bigcirc	\bigcirc
Operation Data Monitoring	\bigcirc	\bigcirc
l/0 Monitoring	\bigcirc	\bigcirc
Waveform Monitoring	\times	\bigcirc
Test Operation	\bigcirc	\bigcirc
Data Copy	\times	\bigcirc
Printing Function	\times	${ }^{* 2}$

* 1 PC interface cable (included) is used.
*2 The printing function is not available on computers running Windows ${ }^{~} 98 / \mathrm{Me}$.

With this software you can set and edit various data on a PC. It comes with a PC interface cable for connecting the liniear motion controller and PC. The software also provides various monitoring functions.

- Specifications (Operating environment)

Item	Model: EZED2	
Operating Software	Microsoft ${ }^{\oplus}$ Windows ${ }^{\oplus} 2000$ Professional Service Pack 4 or later (hereinafter referred to as "Windows ${ }^{\oplus} 2000$ ") Microsoft ${ }^{\oplus}$ Windows ${ }^{\oplus}$ XP Home Edition Service Pack 2 or later (hereinafter referred to as "Windows ${ }^{\ominus}$ XP") Microsoft ${ }^{\oplus}$ Windows ${ }^{\ominus}$ XP Professional Edition Service Pack 2 or later (hereinafter referred to as "Windows ${ }^{\oplus}$ XP") Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR}$ XP Media Center Edition 2004 Service Pack 2 or later (hereinafter referred to as "Windows ${ }^{\circledR}$ XP") Microsoft ${ }^{\oplus}$ Windows ${ }^{\oplus}$ XP Media Center Edition 2005 Service Pack 2 or later (hereinafter referred to as "Windows ${ }^{\oplus}$ XP") Microsoft ${ }^{\oplus}$ Windows ${ }^{\ominus} 98$ Service Pack 1 or later* (hereinafter referred to as "Windows ${ }^{\circledR} 98$ ") Microsoft ${ }^{\oplus}$ Windows ${ }^{\circledR} 98$ Second Edition* (hereinafter referred to as "Windows ${ }^{\oplus} 98$ ") Microsoft ${ }^{\ominus}$ Windows ${ }^{\oplus}$ Millennium Edition* (hereinafter referred to as "Windows ${ }^{\oplus} \mathrm{Me}^{*}$)	
Memory	Windows ${ }^{\oplus}$ 2000: 128 MB or more (192 MB or more is recommended.) Windows ${ }^{\ominus}$ XP Home Edition or Professional Edition: 256 MB or more Windows ${ }^{\ominus}$ XP Media Center Edition 2004 or 2005: 320 MB or more	Windows ${ }^{\circledR} 98$: 64 MB or more (128 MB or more is recommended.) Windows ${ }^{\circledR} 98$ Second Edition: 64 MB or more (128 MB or more is recommended.) Windows ${ }^{\ominus} \mathrm{Me}$: 96 MB or more (160 MB or more is recommended.)
Computer	Pentium ${ }^{\oplus}$ III 500 MHz or more (The OS must be supported.)	
Display Resolution	XGA (1024×768) or higher resolution video adapter and monitor	
Free Hard Disk Space	Free disk space of 60 MB or more	
Serial Port	RS-232C port, 1 channel	
Disk Device	CD-ROM drive	

* Microsoft ${ }^{\oplus}$ Internet Explorer 5.01 or later is also required.
- Service Pack signifies a service pack provided by Microsoft Corporation.
- Microsoft and Windows are registered trademarks of Microsoft Corporation in the United States and other countries.
- Pentium is a trademark or registered trademark of Intel Corporation or its subsidiaries in the United States and other countries.

Connector - Terminal Block Conversion Unit RoHS

A conversion unit that connects a driver to a host controller using a terminal block.

- With a signal name plate for easy, one-glance identification of driver signal names
- DIN-rail mountable
- Cable length: 1 m

Product Line

Model	Connector
CC20T 1	For sensor $1 / 0$ connector
CC36T	For $1 / 0$ connector
CC50T 1	For connection between the EMP Series controller and host controller

- Dimensions (Unit = mm)

CC20TI

DXF B437

Terminal Block Pin No.

CC36TI

(XXF B438

 ल

Terminal Block Pin No.

CC5OTI

©X7 B439

[^6]

- Recommended Crimp Terminals
- Terminal screw size: M3
- Tightening torque: 1.2 N•m
- Applicable minimum lead wire: AWG22 (0.3 mm²)

I/O Cables RoHS

This cable is used for connection between the linear motion controller and the host controller.
A half-pitch connector allowing one-touch connection to the controller is attached at one end of the flat cable.
-Product Line

Model	Length (L)
CC36D1-1	1 m
CC36D2-1	2 m

- Dimensions (Unit = mm)

Conductor: AWG28 ($0.08 \mathrm{~mm}^{2}$)

Driver — Sensor Cable (Applicable product: SPV/EZCII/PWAII Series)

This cable is used for connecting the linear motion controller and EMP Series controller.

- Product Line

Model	Length	Applicable EMP Series
CC005EZ6-EMPD	0.5 m	EMP400 Series

- The current position output function MOVE output, HMSTOP input of the linear motion controller is not available. To use the current position output function, use the I/O cable CC36D \square-1 and implement control from the host controller.

*The following signals are connected to the host controller:
A-phase/B-phase pulse, alarm clear, motor non-excitation/electromagnetic brake release, preset, all windings off

Battery Set ROHS

This battery set is needed to use the controller in the absolute mode. Dedicated battery holder is included.

- Product Line

Model	PAEZ-BT2H

Specifications

Item	Model: PAEZ-BT2H
Battery Type	Cylindrical sealed nickel-cadmium storage cell
Nominal Voltage	2.4 V
Rated Capacity	2000 mAh
Mass	180 g
Life	Approx. 4 years*1*2*3
Data Retention Period	Approx. 360 hours (Approx. 15 days) ${ }^{* 1 * 4}$
Ambient Temperature	$0 \sim+40^{\circ} \mathrm{C}$ (non-freezing)
Ambient Humidity	$20 \sim 85 \%$

* 1 At an ambient temperature of $20^{\circ} \mathrm{C}$
* 2 Calculated by assuming the following conditions of use (one-week cycle)

The battery is charged for eight hours and used for 16 hours to back up data on six days in a week.
The battery is used to back up data for all 24 hours on one day in a week.
*3 The battery that came with the product is not charged. Charge the battery for at least 48 hours before using it.
*4 After the power is cut off with the battery fully charged.

- Dimensions (Unit = mm)

Host Controller Side*

Dimensions (Unit $=\mathrm{mm}$)
Mass: 0.18 kg (DXP) D488

EZ limo absolute mode uses Ni-Cd rechargeable batteries. Disposal of the used batteries is subject to each country's regulations on environmental control. Please contact Oriental Motor if you have any questions regarding disposal of the batteries.

DIN Rail Mounting Plate RoHS

This mounting plate is convenient for installing the controller of the EZ limo on DIN rails easily. (Mounting screws are included.)

- Product Line

Model	PADPO1

Dimensions (Unit = mm)

Cable Holders (Applicable product: SPV Series)

This cable holder protects and guides cables in dual or three axes combinations. Olt can be combined with the mounting bracket (PAB3).
Two sizes are provided for accommodating different numbers of cables.
Internal dimensions - Standard type: $14 \mathrm{~mm} \times 20 \mathrm{~mm} /$ Wide type: $14 \mathrm{~mm} \times 40 \mathrm{~mm}$
Product Line

Applicable Product		Applicable Cable Holder		
Applicable Product	X-Axis Stroke [mm]	Length (L)	Standard Type	Wide Type
		[mm]	Model	Model
SPV Series	50*, 100	768	PACB-1	PACB2-1
	200	864	PACB-2	PACB2-2
	300	960	PACB-3	PACB2-3
	400	1056	PACB-4	PACB2-4
	500*, 600	1248	PACB-6	PACB2-6
	700*, 800	1440	PACB-8	PACB2-8
	900*, 1000	1632	PACB-10	PACB2-10
	1100*, 1200*, 1300	1920	PACB-13	PACB2-13
	1400*, 1500	2112	PACB-15	PACB2-15

* If you are using the product whose stroke is denoted by an asterisk (*), adjust the length of each applicable cable holder.

Dimensions (Unit = mm)
PACB- \square
DXF D059

$A-A^{\prime}$

PACB2- \square DXP D060

Dual Axes Mounting Bracket (Applicable product: SPV Series)

-A dedicated mounting bracket for $\mathrm{X}-\mathrm{Y}$ mounting when two linear slides are combined
-Any product with a stroke up to 400 mm can be installed as the Y -axis.
-The mounting bracket comes with a metal bracket for cable holder (cable holder sold separately).

- Product Line

Applicable Product	Mounting Bracket Model
SPV Series	PAB3

- Example of Use

- Example of Combination

X-Axis	Y-Axis*	Maximum Transportable Mass of Y-Axis
SPV8	SPV6	5 kg

*With all combinations, the maximum Y -axis stroke is 400 mm .

Mounting Plate (Applicable product: EZA Series) ROHS

This plate is provided so that the EZA Series Cylinder can be installed and secured with screws mounted from above. The mounting plate comes with screws to secure it to the EZA Series Cylinder (T-groove is used). The customer must provide mounting screws with which to install the cylinder to the corresponding equipment.

- Product Line

Model Name	Applicable Product	Mass (g)
PTP-A4	EZA4	80
PTP-A6	EZA6	100

- Dimensions (Unit = mm)

PTP-4A ©XF D1355

PTP-6A DXF D1356

Dual Axes Mounting Plate (Applicable product: EZSII/EZA Series) RoHS

This plate is provided for easy installation of the EZA Series on the table of the EZSII Series Motorized Slider. It is a dedicated product that combines the EZA Series and the EZSII Series.

- Product Line

Model Name	Applicable Product	Mass (g)
PAB-S4A4	Combination of EZS4 and EZA4	150
PAB-S6A4	Combination of EZS6 and EZA4	170
PAB-S6A6	Combination of EZS6 and EZA6	205

Dimensions (Unit = mm)

PAB-S4A4 DXF D1357

PAB-S6A4 DXF D1358

PAB-S6A6 ©XF D1359

Selection Calculations

After you have determined which series to use, select the appropriate model. Select a linear slide/cylinder of the size that best suits your application.
Select the appropriate model by following the steps below.
(1) Select a Linear Slide/Cylinder Satisfying the Required Transportable Mass

By referring to the product specifications, select a linear slide/cylinder satisfying the required transportable mass.

Condition: Drive a load of 14 kg over a horizontal distance of $\mathbf{2 0 0} \mathbf{~ m m}$ within 5 seconds.

EZC4: Specifications of Frame Size 42 mm $\times 42$ mm, 24 VDC Cylinder

Specifications of Cylinder RoHS								
Drive Method ${ }^{\text {B }}$ B	Ball Screw	Repetitive Positioning Accuracy [mm]			± 0.02 Resolution	n [mm]	0.01	
Model	$\begin{aligned} & \text { Lead } \\ & {[\mathrm{mm}]} \\ & \hline \end{aligned}$	Transportable Mass [kg] ${ }^{* 1}$		Thrust [N]	Push Force $[\mathrm{N}]^{* 2}$	Electromagnetic Brake Holding Force [N]		Maximum Speed
		Horizontal	Vertical					[mm/s]
EZC4D \square-K		~ 15	-	~ 70			-	
EZC4D \square M-K	12	~ 15	~ 6.5	~ 70	100		70	600
EZC4E \square-K	6	~ 30	-		200		-	
EZC4E \square M-K	6	~ 30	~ 14	~ 140	200		140	300
- Enter the stroke length in the box (\square) within the model name.								

Based on the "condition" and "specifications of cylinder," select the cylinder model EZC4D020-K.

(2) Check the Positioning Time

From the graph "Positioning Distance - Positioning Time" below, check if the selected cylinder satisfies the desired positioning time.
From the graph, find the "positioning time of 4.0 s " for the "positioning distance of 200 mm ."
Notes:
The calculated positioning time does not include the settling time
Use a settling time of 0.15 s as a reference
The running duty, which represents the relationship of running time and stopping time, should be kept to 50% or less (reference). Running duty [\%] $=$ running time $[s] \times 100 /($ running time $[s]+$ stopping time [s])

Check the Positioning Time
EZC4E (Lead: 6 mm)
\diamond Vertical Installation

- Positioning Distance - Positioning Time

(3) Check the Operating Speed and Acceleration of the Linear Slide/Cylinder

The time calculated from "Check the Positioning Time" assumes the operating speed and acceleration that achieve the shortest positioning time. Check the specific operating speed and acceleration at which to drive the linear slide/cylinder based on the time calculated in step (2).

SPV Series Linear Slides

\diamond Operating Speed of the Linear Slide
Refer to the "maximum speed specification in Specification of Linear Slide."
\diamond Acceleration of the Linear Slide
Check using the "Load Mass - Acceleration" graph.

EZCII/EZA/PWAII Series Cylinders

\diamond Operating Speed and Acceleration of the Cylinder
Check the operating speed and acceleration by referring to "Positioning Distance - Operating Speed" and "Positioning Distance Acceleration.".

Example) For a positioning distance of 200 mm on the graph, the operating speed is $50 \mathrm{~mm} / \mathrm{s}$, and the acceleration is $2.0 \mathrm{~m} / \mathrm{s}^{2}$.

EZC4E040-K "•Positioning Distance - Operating Speed"
 EZC4E040-K "•Positioning Distance - Acceleration"

EZA6

Stroke	50	100	150	200	250	300
Mass of Rod (kg)	0.33	0.44	0.548	0.653	0.758	0.863
L Rod Overhung Length from Center of Guide Block (mm)	139	189	239	289	339	389
I Length from Center of Guide Block to Center of Gravity of Rod (mm)	44	70.5	96.5	122	147	173
\mathbf{Z} Height from Center of Guide Block to Center of Gravity of Rod (mm)	28					

How to Calculate the Speed for Sensorless Return to Home Operation

The EZA Series can perform high-speed, sensorless return to home operation. The maximum return to home speed is $100 \mathrm{~mm} / \mathrm{s}$ when the lead is 12 mm , and the maximum speed becomes $50 \mathrm{~mm} / \mathrm{s}$ when the lead is 6 mm . Select the applicable calculation formula by referring to the cylinder installation conditions and calculate the maximum settable speed for return to home operation from the specific overhung length and load mass.

Note that the load will receive an impact if the sensorless return to home operation is performed at high speed.

* If there is an overhung load on both the Z -axis and Y -axis, compare $\mathrm{V} z_{_}$and V Y . The smaller of the two provides the maximum settable speed for return to home operation.
- Cylinder Installation Conditions (Horizontal, wall—mounted or ceiling—mounted)
\diamond Overhung in Z-Axis Direction

\diamond Overhung in Y-Axis Direction

\diamond Overhung in Y-Axis Direction

Cylinder Size	Strength Coefficient k		Upward Coefficient i	
	Lead 12 mm	Lead 6 mm	Lead 12 mm	Lead 6 mm
EZA4	32.7	33.8	3.2	3.3
EZA6	4.7	6.9	0.5	0.5

\diamond Overhung in Y-Axis Direction

L_{r} : Center of Gravity of load m : Mass of load

Cylinder Size	Strength Coefficient k		Downward Coefficient i	
	Lead 12 mm	Lead 6 mm	Lead 12 mm	Lead 6 mm
EZA4	19.5	23.0	-1.9	-2.2
EZA6	2.0	1.5	-0.1	-0.2

-EZA4D (Lead $12 \mathrm{~mm}, 24$ VDC)

\diamond Horizontal Installation

- Positioning Distance - Operating Speed

Positioning Distance - Acceleration

-EZA4E (Lead 6 mm, Single-Phase 100 VAC/Single-Phase 200-230 VAC)
\diamond Horizontal Installation

- Positioning Distance - Operating Speed

\diamond Vertical Installation
- Positioning Distance - Operating Speed

EZA6D (Lead 12 mm, 24 VDC)
\diamond Horizontal Installation

- Positioning Distance - Operating Speed

\diamond Vertical Installation
- Positioning Distance - Operating Speed

EZA6E (Lead 6 mm, 24 VDC)
\diamond Horizontal Installation

- Positioning Distance - Operating Speed

\diamond Vertical Installation
- Positioning Distance - Operating Speed

Positioning Distance - Acceleration

Positioning Distance - Acceleration

\diamond Horizontal Installation

- Positioning Distance - Operating Speed Positioning Distance - Acceleration

\diamond Vertical Installation
- Positioning Distance - Operating Speed

EZA6E (Lead 6 mm, Single-Phase 100 VAC/Single-Phase 200-230 VAC) \diamond Horizontal Installation

- Positioning Distance - Operating Speed

\diamond Vertical Installation
- Positioning Distance - Operating Speed

Positioning Distance - Acceleration

Positioning Distance - Acceleration

ORIENTAL MOTOR U.S.A. CORP.

Western Sales and
Customer Service Center
Tel: (310) 715-3301 Fax: (310) 225-2594
Los Angeles
Tel: (310) 715-3301
San Jose
Tel: (408) 392-9735

Midwest Sales and Customer Service Center
Tel: (847) 871-5900 Fax: (847) 472-2623
Chicago
Tel: (847) 871-5900
Dallas
Tel: (214) 432-3386
Toronto
Tel: (905) 502-5333

Eastern Sales and

 Customer Service CenterTel: (781) 848-2426 Fax: (781) 848-2617
Boston
Tel: (781) 848-2426
Charlotte
Tel: (704) 766-1335
New York
Tel: (973) 359-1100

Technical Support
Tel: (800) 468-3982 / 8:30 A.м. to 5:00 P.M., P.S.T. (M-F) 7:30 А.м. to 5:00 Р.M., C.S.T. (M-F)
E-mail: techsupport@orientalmotor.com

Obtain Specifications, Online Training and Purchase Products at: www.orientalmotor.com

[^0]: *1 Maximum speed of push-motion operation of the EZC II/EZA Series and PWAII Series are $25 \mathrm{~mm} / \mathrm{s}$ and $6 \mathrm{~mm} / \mathrm{s}$, respectively.
 *2 The value when an external guide is used.

[^1]: The photograph shows the actuator without its cover.

[^2]: Notes:

 - The positioning time in the graph does not include the settling time. Use a settling time of 0.2 s as a reference (settling time is adjustable by speed filter function). - The starting speed should be $37.5 \mathrm{~mm} / \mathrm{s}$ or less.

[^3]: - The system configuration shown above is an example. Other combinations are available.

[^4]: * 1 The maximum current varies depending on the connected linear slide or cylinder.
 [ESMC-K2] EZCM4/EZAM4: 1.7 A SPVM6/EZCM6/EZAM6: 4.0 A
 [ESMC-A2] EZCM4/EZAM4: 3.0 A SPVM6/EZCM6/EZAM6: 5.0 A SPVM8/PWAM8: 6.0 A PWAM6:6.4 A
 [ESMC-C2] EZCM4/EZAM4: 2.1 A SPVM6/EZCM6/EZAM6:3.0 A SPVM8/PWAM8:3.5 A PWAM6:3.9 A
 *2 Values vary depending on the connected linear slide. Check the specifications of each series.

[^5]: *The center of the DIN rail when a DIN rail mounting plate (PADPO 1, sold separately) is used for installation

[^6]: Terminal Block Pin No.

 ##

