ORIENTAL MOTOR

Standard AC Motors

Introduction

Features of Standard AC Motors	A-2
Applications for Standard AC Motors	A-4
Motor Types	A-5
Features of the V Series	A-6
How to Read Specifications	A-7
Common Specifications	-11

Standard AC Motors

Introduction

	3
Induction Motors ······ A-13	Motors
Reversible Motors ····· A-67	Heversible Motors
Synchronous Motors ······ A-103	Synchronous Motors
Torque Motors A-111	Torque Motors
Watertight Motors ····· A-119	Watertight Motors
Electromagnetic Brake Motors A-127	Magnetic Brake
Clutch and Brake Motors ······ A-171	Clutch & Brake
Brake Pack A-179	Brake Pack
Right-Angle Gearheads ······ A-189	Right-Angle Gearheads
Accessories ······ A-203	Accessories
Before Using a Standard AC Motor ····· A-219	a Standard AC Motor

Features of Standard AC Motors

Features

Easy-to-Use and Reliable

All that is required to rotate a standard compact AC motor is a commercial power supply and a capacitor. Three-phase motors do not even require a capacitor. They are the simplest way to get rotational operation form a motor. The simplicity of AC motors improves their reliability and service life.

Conform to Safety Standards and Global Power Supply Voltages

Many of Oriental Motor's AC motors conform to UL/CSA/EN standards and apply the CE Marking in accordance with the low voltage directives. AC motors are available in power supply voltages that meet the requirements of North America, Asia and Europe.

Variety of Functions

There are two basic types of AC motors: standard induction motors that run continuously and reversible motors that allow for bi-directional operation. AC motors with additional functionality are also available. These types of motors include: electromagnetic brake motors to hold loads in a power-off situation; clutch and brake motors for quick starts and stops; synchronous motors for a fixed speed in synchronization with the power frequency ; and torque motors for tension control and winding applications.

Quiet Operation

Today's applications demand lower noise levels. Oriental Motor has met these demands by developing low-noise gearheads and quiet AC motors using new and innovative technologies. In particular, the **V** Series is especially suitable for applications where noise reduction is required, producing up to 6dB less than other standard AC motors.

Capacitor-run, single-phase and three-phase motors are available. Lead wire type, terminal box type and conduit box type motors are available depending upon how the power source and the motor are connected.	
These are capacitor-run, single-phase motors. The outward appearance is the same as that of induction motors. These motors are suited for applications where the motor must frequently switch direction.	
These motors provide rotation at a fixed speed in synchronization with the frequency of the power source. (60 Hz: 1800 r/min)	
This motor is suitable for controlling tension and pushing applications in winding operations. Torque can be set to any desired level by changing the input voltage.	
	Capacitor-run, single-phase and three-phase motors are available. Lead wire type, terminal box type and conduit box type motors are available depending upon how the power source and the motor are connected. These are capacitor-run, single-phase motors. The outward appearance is the same as that of induction motors. These motors are suited for applications where the motor must frequently switch direction. These motors provide rotation at a fixed speed in synchronization with the frequency of the power source. (60 Hz: 1800 r/min) This motor is suitable for controlling tension and pushing applications in winding operations. Torque can be set to any desired level by changing the input voltage.

ntroauction

Applications for Standard AC Motors

Induction Motors For uni-directional continuous operation

Synchronous Motors

For applications where the motor's rotation must be kept at a fixed speed, regardless of changes of the load.

Torque Motors

For applications where a rolled object is released according to the amount of tension.

Electromagnetic Brake Motors

For applications in which loads must be held.

Reversible Motors

For applications where the motor must switch frequently from one direction to the next

Watertight Motors For applications where motors are splashed.

Clutch and Brake Motors (C•B Motors) For applications where the

motor must repeat frequent starting and stopping.

How to Select a Brake Motor Selecting from stopping accuracy

* The overrun values are those of an individual motor.

Selecting based on frequency of use

Notes:

• The operating cycles are based merely on brake response. The value specified above is the maximum, so it may not be possible to repeat braking operation at this frequency.

 In an actual application, be certain the surface temperature of the motor case remains below 194°F (90°C) by considering the rise in motor temperature.

= Available

Product Line

									• / / / / / / /
Frame Size)	□1.65 in. (□42 mm)	□2.36 in. (□60 mm)	□2.76 in. (□70 mm)	□3.15 in. (□80 mm)		□3.54 in. (□90 mm)		□4.09 in. (□104 mm)
Output Pow	er	1 W (1/750 HP)	6 W (1/125 HP)	15 W (1/50 HP)	25 W (1/30 HP)	40 W (1/19 HP)	60 W (1/12 HP)	90 W (1/8 HP)	200 W (1/4 HP)
	World K Series		•	•	•	•	٠	•	
	K Series 4-pole	•							
Induction Motors	K Series 2-pole				• (40 W)		٠	•	
	V Series			•	•	•	٠	•	
	BH Series								•
	World K Series		•	•	•	•	٠	•	
Reversible Motors	K Series	•							
	V Series			•	•	•	٠	•	
	World K Series			•	•	•	٠	•	
Electromagnetic Brake Motors	V Series			•	•	•	٠	•	
	BH Series								•
Clutch and Brake Motors	·					•	٠	•	
Synchronous Motors			• (4 W)	• (10 W)	• (15 W)	• (25 W)			
Torque Motors				• (6 W)	• (10 W)	• (20 W)			
Watertight Motors									• (90 W)

Induction, Reversible and Electromagnetic Brake Motors

Global Standard World K Series

Types: Induction, Reversible and Electromagnetic Brake Motors

Output Power: 6 W $(1/125 \text{ HP}) \sim 90 \text{ W} (1/8 \text{ HP})$ Our wide range of products includes those that meet the power supply voltages of the major countries in the world, which enables the motor to be used for various applications.

V Series High-Strength, Long Life and Quiet Operation

Types: Induction, Reversible and Electromagnetic Brake Motors

Output Power: 6 W (1/125 HP)~90 W (1/8 HP)

Higher maximum permissible torque of up to three times the level of the World **K** Series gearhead, long life that last for 10,000 hours and a noise reduction of 6 dB. Available with the motor and its dedicated gearhead already assembled. Meets the power supply voltages of major countries in the world, which enables the motor to be used for various applications, same as the World **K** Series.

High-output Power 200 W (1/4 HP) BH Series Types: Induction and Electromagnetic Brake Motors Output Power: 200 W (1/4 HP)

The **BH** Series provides 200 W (1/4 HP) output power and up to 350 lb-in (40 N·m) of torque in a compact 4.09 in. sq. (104 mm sq.) mounting configuration. Motors and gearheads come pre-assembled with both parallel shaft and right-angle type gearheads. Conforms to global power supply voltages and standards.

Clutch and Brake Motors

Types: Induction Motors Output Power: 40 W(1/19 HP)~90 W (1/8 HP) This combination makes it the ideal motor for uses involving frequent starting and stopping.

Synchronous Motors

Output Power: 4 W(1/190 HP) \sim 25 W (1/30 HP) This provides rotation at a fixed speed in synchronization with the frequency of the power source, regardless of fluctuation of the load or line voltage.

Torque Motors

Output Power: 6 W(1/125 HP) \sim 20 W (1/38 HP) The torque can be set to any desired level by changing the input voltage.

Watertight Motors

Output Power: 25 W (1/30 HP)~90 W (1/8 HP) These geared motors provide watertight and dustproof performance that meet IP67 grade.

Features of the V Series

Quiet Operation

The **V** Series utilizes a comprehensive set of noise-reduction technologies: a special tooth-surface machining technology to remove cutting marks of 1 to 2 μ m from the surface of the motor shaft teeth, an optimized quiet-running design that considers the circular speed of the motor while maintaining its strength, and a high-accuracy assembly-technology that ensures precision at micron levels.

High-Strength, Long Life

The motor's considerable strength has resulted from the use of a rigid case, a proprietary side-panel construction and an optimized gear design. Moreover, the use of a largerdiameter bearing serves to extend its useful life.

Higher Maximum Permissible Torque by Up to Three Times *

The high-strength design of the **V** Series is made evident through its maximum permissible torque, which has been increased up to three times* the level of the **GN** type gearhead, and two times the level of **GU** type gearhead. Even if the load condition is changed to a level that normally requires a higher amount of gearhead strength, the **V** Series can accommodate such a change without the need to increase the size of the motor or gearhead.

* Specific torque is dependent on frame size.

Designed for Long-Term Performance (10,000 hours)

Each model in the **V** Series is designed to last for 10,000 hours when driven at the maximum permissible torque. That's twice the design life of Oriental Motor's **GN** and **GV** type gearheads. This results in a considerable savings in time and effort with regard to maintenance.

Combination Type (Pre-Assembled Gearmotors)

As an added convenience to complement high quality and performance, each motor in the \mathbf{V} Series comes preassembled with a gearhead to make installation easy.

Replacement Gearhead

Should you wish to change the gear ratio, easy gearhead replacement makes that possible.

Spare Parts

The **V** Series motor and gearhead can be purchased separately for use as spare components.

When actually selecting a motor and gearhead, you should read the specifications to make sure that the motor you select meets your application needs. Shown below is an explanation of how you should read the specifications on some important items.

How to Read Specifications

Motor Specifications Table (Example)

Specifications — 30 Minutes Rating

		1	0		2	(3	(4	5	
Model		1			1		1		1	•	
Upper Model Name: Pinion Shaft Type	Outpu	ıt Power	Voltage	Frequency	Current	Starting	g Torque	Rated	Torque	Rated Speed	Capacitor
Lower Model Name(): Round Shaft Type											
Lead Wire Type Terminal Box Type	Цр	14/	VAC	U7	٨	07.in	mN m	oz in	mN m	r/min	E
Dimension Dimension	LIF	VV	VAG	11Z	A	02-111		02-111	11111-111	1/11111	μι
TP 5RK90GU-AWU 5RK90GU-AW (5RK90A-AWU) (5RK90A-AWT	TU 1/8 U)	90	110 115	60	1.81	83	590	83	585	1500	30

① Output Power: The amount of work that can be performed in a given period of time. It can be used as a criteria for motor capability.

② Current: The current value used by a motor when the motor is producing rated torque.

- ③ Starting Torque: This term refers to the torque generated the instant the motor starts. If the motor is subjected to a friction load smaller than this torque, it will operate.
- ④ Rated Torque: This is the torque created when the motor is operating most efficiently. Though the maximum torque is far greater, rated torque should, from the standpoint of utility, be the highest torque.
- (5) Rated Speed: This is the speed of the motor when the motor is producing rated torque
- (6) Rating: The time that a motor can operate continuously at rated output (torque). With a continuous rating, a motor can operate continuously.

Specifications Table for Electromagnetic Brake Section (Power Off Activated type) (Example)

					1
Model	Voltage VAC	Frequency Hz	Current A	Input W	Holding Brake Torque oz-in mN·m
4RK25GN-AWMU 4RK25A-AWMU	Single-Phase 110 Single-Phase 115	60	0.09	6	14.2 100

① Holding brake torque: This refers to the holding brake torque of the electromagnetic brake and expresses the size of holding torque at the motor output shaft.

When a gearhead is combined, calculate the holding torque at the gearhead output shaft with the following formula.

Holding torque at the gearhead output shaft $T_G = T_M \times i$

 $T_{\mbox{\scriptsize G}}$: Holding torque at the gearhead output shaft

TM: Holding torque at the motor output shaft

i : Gear ratio

Specifications Table for Permissible Overhung Load and Permissible Thrust Load (Example)

2		
1)		
• /		

- (1) Permissible Overhung Load: The value (1) shown in the table above is the value for the permissible overhung load. As shown in the figure above, permissible overhung load is the permissible value of the load applied in a direction perpendicular to the gearhead output shaft.
- (2) Permissible Thrust Load: As shown in the figure above, this term refers to the permissible value of load applied in the axial direction to the gearhead output shaft. Keep the thrust load to no more than half the motor weight.

The calculating method of overhung load applied on the output shaft is the same as for a gear shaft. See the permissible overhung load and permissible thrust load for details.

Permissible overhung load and permissible thrust load for gearhead → Page A-11

How to Read Gearhead Specifications

Gearheads are shown for both AC standard motors and Speed Control Systems.

Gearmotor – Torque Table (Example)

Single-Phase115/230 VAC 60 Hz

 Single-Pl 	hase115/230	VAC	, 60	Hz											Unit :	= Uppe	r value	s: Ib-in	/Lowe	r value	s: N∙m
Model	Speed r/min	600	500	360	300	240	200	144	120	100	72	60	50	36	30	24	20	18	15	12	10
wouer	Gear Ratio	3	3.6	5	6	7.5	9	12.5	15	18	25	30	36	50	60	75	90	100	120	150	180
5RK90GU-AV		12.3	15	21	24	31	38	46	56	68	85	102	123	170	177	177	177	177	177	177	177
5RK90GU-AV		1.4	1.7	2.4	2.8	3.6	4.3	5.3	6.4	7.7	9.7	11.6	13.9	19.3	20	20	20	20	20	20	20

(1) Permissible Torque: It refers to the value of load torque driven by the gearhead's output shaft.

Each value is shown for the corresponding gear ratio.

Permissible torgue when a gearhead is connected can be calculated with the equation below. Permissible torque for some products are omitted. In that case, use the equation below to calculate the permissible torque.

Permissible Torque $T_G = T_M \times i \times \eta$

TG: Permissible Torque of Gearhead

Тм: Motor Torque

- i : Gear Ratio of Gearhead
- η : Gearhead Efficiency

Gearhead Efficiency

Gear Ratio	3	3.6	5	6	7.5	9	12.5	15	18	25	30	36	50	60	75	90	100	120	150	180	250	300	360
															0/						01.0/		
V Series 6 W, 15 W, 25 W Type						90	1%							86	%						81%		
V Series 40 W, 60 W Type						90 %							86	%						81 %			
V Series 90 W Type					90	%					86	%					81	%					
2GN⊟KA, 3GN⊒KA,					01 0/						70 0/					66	0/						
4GN□KA, 5GN□KA,					01 70						13 70					00	70						
OGN□KA, 5GU□KA,			81	%				73 %				66 %					59	%					
5GU⊒KHA													66	%			59	%					
BH Series		90 %		90 %	9	90 %		86	%		86	%		81 %		81 %		81 %		81 %			
BHF Series	90 %		90 %		9	90 %		86 %			86 %		81 %				81 %			81 %			

Gear Ratio	5	10	15	20	30	50	100	200
BX Series 30~120 W Type								
FBL II Series		90	%			86%		81%
AXH Series 30~100 W Type								
BX Series 200 W, 400 W Type		81 %			73%		66	%

• The efficiency of the BH6G2- RH and BH6G2- RA is 73% for all gear ratios, both during rated operation and at start.

Gearhead efficiency of all the decimal gearheads is 81%.

• For the efficiency of Right-Angle Gearheads, see the page for Right-Angle Gearheads. The efficiency of Right-Angle Gearheads → Page A-191

Induction Reversible Synchronous Motors Motors Motors Torque Motors Watertight Magnetic Motors Brake Clutch & Brake Brake Pack Accessories

Maximum Permissible Torque

The gearhead output torgue increases proportionally as the gear ratio increases. However, factors affecting the gearhead mechanical strength such as gear construction and materials etc., limit the size of the load which can be applied to the gearhead. This torque is called the maximum permissible torque.

The maximum permissible torques of typical gearheads are shown in the figure to the right.

Speed and Direction of Rotation Gearmotor – Torque Table (Example)

1

 Single-P 	Single-Phase TTS VAC/230 VAC, 60 Hz Unit = Upper values: lb-in/Lower values: N-m Model Speed ⁴ r/min 600 500 360 300 240 200 144 120 100 72 60 50 36 30 24 20 18 15 12 10															s: N∙m					
Model	Speed ⁴ r/min	600	500	360	300	240	200	144	120	100	72	60	50	36	30	24	20	18	15	12	10
Wouer	Gear Ratio	3	3.6	5	6	7.5	9	12.5	15	18	25	30	36	50	60	75	90	100	120	150	180
5RK90GU-A		12.3	15	21	24	31	38	46	56	68	85	102	123	170	177	177	177	177	177	177	177
5RK90GU-A		1.4	1.7	2.4	2.8	3.6	4.3	5.3	6.4	7.7	9.7	11.6	13.9	19.3	20	20	20	20	20	20	20

(1) Speed: This refers to the speed of rotation in the gearhead output shaft. The speeds, depending on gear ratio, are shown in the permissible torque table when the gearhead is attached. The speed is calculated by dividing the motor's synchronous speed by the gear ratio. The actual speed, according to the load condition, is 2~20% less than the displayed value.

The speed is calculated with the following equation.

Speed N_G= $\frac{N_M}{i}$

Ng: Speed of Gearhead [r/min]

NM: Speed of Motor [r/min]

i : Gear Ratio of Gearhead

(2) Direction of rotation: This refers to the direction of rotation viewed from the output shaft. The shaded areas indicate rotation in the same direction as the motor shaft, while the others rotate in the opposite direction. The direction of gearhead shaft rotation may differ from motor shaft rotation depending on the gear ratio of the gearhead. The gear ratio and rotation direction of each gearhead is shown in the table below.

Same direction as the motor shaft

Gear Ratio and Rotation Direction of Gearhead (Example)

For details see the page where each product is listed.

Gear Ratio 3 3.6 5 6 7.5 9 12.5 15 18 25 36														Оррс	osite d	directi	ion as	the r	notor	shaft
Gear R Model	atio 3	3.6	5	6	7.5	9	12.5	15	18	25	30	36	50	60	75	90	100	120	150	180
2GN□KA, 3GN□KA,																				
4GN⊡KA, 5GN⊡KA,																				
5GC□KA																				
OGN⊡KA, 5GU⊡KA,																				
5GCH□KA																				
5GU□KHA																				

* Connection of a decimal gearhead reduces the speed by 10:1, but does not affect the direction of rotation.

Specifications Table for Permissible Overhung Load and Permissible Thrust Load (Example)

				[00	
Gearhead Mode		Maximum	Permissible Overhung Load lb.(N)		Permissible	
		Torque	0.39 inch (10 mm)	0.79 inch (20 mm)	Thrust Load	
	Gear Ratio	lb-in (N⋅m)	from shaft end	from shaft end	lb.(N)	
4GN ⊟K A	3~18	70 (9.0)	22 (100)	33 (150)	11 (50)	
	25~180	70 (0.0)	45 (200)	67 (300)	11 (50)	

- ① Permissible Overhung Load: The value ① shown in the table above is the one for the permissible overhung load. As shown in the figure above, permissible overhung load is the permissible value of the load applied in a direction perpendicular to the gearhead output shaft.
- ② Permissible Thrust Load: The value ③ shown in the table above is the one for permissible thrust load specifications. As shown in the figure above, this term refers to the permissible value of load applied in the axial direction to the gearhead output shaft.

When a chain, gear, belt, etc. is used as the transmission mechanism, an overhung load is always applied the output shaft. The overhung load is calculated with the following equation.

Overhung Load W =
$$\frac{K \times T \times f}{\gamma}$$

W: Overhung Load [lb. (N)]

- K: Load Coefficient for Driving Method (See the right table)
- T: Torque at Gearhead Output Shaft [lb-in (N·m)]

f: Service Factor

 γ : Effective Radius of Gear or Pulleys [in. (m)]

♦ Load Coefficient for Driving Method (K)

Drive System	K
Chain or Synchronous belt	1
Gear	1.25
V-belt	1.5
Flat belt	2.5

♦ Service Factor (f)

Load Type	Example	Factor f
Uniform Load	Unidirectional continuous operation For driving belt conveyors and film rollers that are subject to minimal load fluctuation	1.0
Light Impact	Frequent starting and stopping Cam drive and inertial body positioning via stepping motor	1.5
Medium Impact	 Frequent instantaneous bidirectional operation, starting and stopping of reversible motors Frequent instantaneous stopping via brake pack of AC motors Frequent instantaneous starting and stopping of brushless motors, servo motors 	2.0

Permissible Load Inertia for Gearheads

This refers to the permissible value for load inertia (J) at the gearhead output shaft. Based on the permissible value at the motor output shaft, calculate J with the following equation and convert it into the permissible value for the gearhead output shaft.

Permissible Load Inertia

 $\label{eq:Gear} \mbox{Gear ratio 3:1}{\sim}50{:1} \qquad \qquad \mbox{J}_{G} = \mbox{J}_{M} \times \mbox{i}^{2}$

 $\label{eq:Gear} \mbox{Gear ratio 60:1 or higher} \qquad \ \ J_G = J_M \times 2500$

Jg: Permissible Load Inertia at the gearhead output shaft J [oz-in² (kg·m²)]

- JM: Permissible Load Inertia at the motor shaft J [oz-in² (kg·m²)]
- i : Gear ratio (Example: i = 3 means the gear ratio of 3:1)

Permissible Load Inertia at the Gearhead Output Shaft (Example)

No. of Phase	Erama Siza	Output Dowor	Permissible Load Inertia at Motor Shaft		
NO. OF PHASE	Fidilie Size	Output Power	J [oz-in² (×10 ^{−4} kg⋅m²)]		
Single-Phase	3.15 inch (80 mm)	25 W (1/30 HP)	1.7 (0.31)		

For some products that are combination types, the permissible load inertia at the gearhead output shaft is directly shown as the specifications values, divided with each gear ratio.

ntroduction

Induction Reversible Synchronous Motors Motors Motors

Motors

Torque Motors

Watertight Magnetic Motors Brake

Clutch & Brake

Brake

Right-Angle Gearheads

Accessories

Before Using a Standard AC Motor

Permissible Overhung Load and Permissible Thrust Load of Round Shaft Motors Permissible Overhung Load Permissible

	Permissible Overhung Load Ib. N					
Motor Frame Size	Motor Shaft Size	Series	0.39 in. (10 mm) from shaft end		0.79 in. (20 mm)	
in. (mm)	in. (mm)				from shaft end	
□1.64 (□42)	φ0.1969 (φ5)	К	9	40	_	
□2.36 (□60)	φ0.2500 (φ6.35)	World K	11.2	50	24	110
□2.76 (□70)	φ0.2500 (φ6.35)	World K	9	40	13.5	60
□3.15 (□80)	φ0.3125 (φ7.937)	World K	20	90	31	140
	φ0.3150 (φ8)	К	20			
	φ0.3750 (φ9.525)	World K	21	1 140	45	200
□3.54 (□90)	φ0.3937 (φ10)	К	31			200
	10.4704 (110)	World K	E 4	0.40	60	070
	$ \phi 0.4724 (\phi 12) $ K		54	240	00	270
□4.09 (□104)	φ0.5512 (φ14)	BH	72	320	78	350

Thrust Load

Avoid thrust as much as possible. If thrust load is unavoidable, keep it to no more than half the motor weight.

Permissible Overhung Load and Permissible Thrust Load of Gearheads

		Maximum Dar	minaible Tergue	Permi	Permissible Overhung Load Ib. N		Dermissible Thrust Load		
Model	Gear Ratio	Maximum Permissible forque		0.39 in. (10 mm)		0.79 in. (20 mm)		Permissible mirust Load	
		lb-in	N∙m	from shaft end		from shaft end		lb.	Ν
0GN_KA	3~180	8.8	1.0	4.5	20	—	_	3.3	15
	3~18	26	2.0	11.2	50	18	80	6.7	20
	25~180	20	3.0	27	120	40	180	0.7	30
	3~18	44	5.0	18	80	27	120	0	40
	25~180	44	5.0	33	150	56	250	9	40
	3~18	70	8.0	22	100	33	150	11.2	50
	25~180	70	0.0	45	200	67	300	11.2	50
5GNUKA 5GCUKA	3~18	88	10	56	250	78	350	22	100
	25~180	00	10	67	300	101	450	~~~~	100
	3~9	_		90	400	112	500		
5GU⊟KA, 5GCH⊟KA	12.5~18	177	20	101	450	135	600	33	150
	25~180			112	500	157	700		
5GU_KHA	50~180	260	30	90	400	135	600	33	150
	5~9	-		22	100	33	150	9	40
VHI206, VHR206 Type	12.5~25	53	6	33	150	45	200		
	30~360			45	200	67	300		
	5~9	-	10	33	150	45	200	18	80
VHI315, VHR315 Type	12.5~25	88		45	200	67	300		
	30~360			67	300	90	400		
	5~9	141	10	45	200	56	250		100
VH1425, VHR425 Type	12.5~25		10	6/	300	/8	350	22	
	30~380			101	450	123	500	33	
VHI540, VHR540 Type	J~7	260	30	90	400	105	000		150
VHI560, VHR560 Type	12.5~10	260		110	400	157	700		
	2J~300			00	400	110	700 500		
	12.5~18	350	40	101	400	135	600	33	150
VHIJ90, VHKJ90 Type	25.180	350	40	112	500	157	700		
	3~36			102	550	180	800		
BHI62, BHF62 Parallel Shaft Type	50~180	350	40	146	650	220	1000	45	200
BHI62RH Bight-Angle Hollow Shaft Type	5~36			270*	1200*	240*	1100*		
BHF62RH Right-Angle Hollow Shaft Type	50~180	- 530	60	490*	2200*	450*	2000*	67	300
BHI62RA Bight-Angle Solid Shaft Type	5~36			200	900	220	1000		
BHF62RA Right-Angle Solid Shaft Type	50~180	530	60	380	1700	410	1850	67	300
	3~18			22	100	33	150	- 11.2	50
FPW425 lype	25~180	70	8.0	45	200	67	300		
	3~18	- 88	10	56	250	78	350	- 22	100
FPW540 Type	25~180			67	300	101	450		
	3~9	132		90	400	112	500	33	150
FPW560 Type	12.5~18		15	101	450	135	600		
	25~180			112	500	157	700		
	3~9	260	20	123	550	180	800	45	200
	12.5~180	200	30	146	650	220	1000		200

• For permissible overhung load and permissible thrust load of 4GN RH, 5GN RH, 5GU RH (Right-Angle Gearheads Hollow Shaft Type), see the page where the products are listed. \rightarrow Page A-189

* For BH and BHF Series Right-Angle Hollow Shaft Combination Types, the permissible overhung load values are distances from the flange mounting surface. The permissible overhung loads at each distance is calculated with the equation on the following page.

Calculating the Permissible Overhung Load for BH6G2-□RH

As shown in the figure below, when the end of the shaft being driven is supported, calculate the permissible overhung load using the following equation. (This mechanism is the most demanding in terms of overhung load.) • Gear Ratio 5:1~36:1

 $\label{eq:Permissible Overhung Load W [lb. (N)] = \frac{3.44 \text{ in. } (87.5 \text{ mm})}{3.44 \text{ in. } (87.5 \text{ mm}) + L_p} \times 300 \text{ lb. } (1350 \text{ N})$

300 lb. (1350 N): Permissible Overhung Load at the flange mounting surface

Gear Ratio 50:1~180:1

Permissible Overhung Load W [lb. (N)] = $\frac{3.44 \text{ in. } (87.5 \text{ mm})}{3.44 \text{ in. } (87.5 \text{ mm}) + L_p} \times 550 \text{ lb. } (2450 \text{ N})$

550 lb. (2450 N): Permissible Overhung Load at the flange mounting surface

Permissible Load Inertia of Gearhead

When a high load inertia (J) is connected to a gearhead, high torques are exerted instantaneously on the gearhead when starting up in frequent, discontinuous operations (or when stopped by an electromagnetic brake, or when stopped instantaneously by a speed control motor). Excessive impact loads can be the cause of gearhead or motor damage. The table below gives values for permissible load inertia on the motor shaft. Use the motor and gearhead within these parameters. The permissible inertial load value shown for three-phase motors is the value when reversing after a stop. The permissible load inertia (J) on the gearhead output shaft is calculated with the following equation. The life of the gearhead when operating at the permissible inertial load with instantaneous stops of the motors with electromagnetic brakes or speed control motors is at least 2 million cycles.

Permissible Load Inertia at Gearhead Output Shaft

 $\begin{array}{lll} \mbox{Gear ratio 3:1}{\sim}50{:}1 & J_G{=}J_M{\times}~i^{\ 2} \\ \mbox{Gear ratio 60:1 or higher} & J_G{=}J_M{\times}2500 \\ \end{array}$

Jg: Permissible Load Inertia at the gearhead output shaft J [oz-in2 (kg·m2)]

JM: Permissible Load Inertia at the motor shaft J [oz-in² (kg \cdot m²)]

i : Gear ratio (Example: i = 3 means the gear ratio of 3:1)

Permissible Load Inertia at the Motor Shaft AC Motor

			Permissible Load Inertia			
No. of Phase	Frame Size	Output Power	at Motor Shaft			
	inch (mm)	W (HP)	J: oz-in² (×10 ⁻⁴ kg⋅m²)			
	1.64 (42) sq.	1 (1/750)	0.088 (0.016)			
	2.36 (60) sq.	6 (1/125)	0.34 (0.062)			
	2.76 (70) sq.	15 (1/50)	0.77 (0.14)			
Single Dhase	3.15 (80) sq.	25 (1/30)	1.7 (0.31)			
Sillyle-Filase		40 (1/19)	4.1 (0.75)			
	3.54 (90) sq.	60 (1/12)	6.0 (1.1)			
		90 (1/8)	6.0 (1.1)			
	40.9 (104) sq.	200 (1/4)	11 (2.0)			
	3.15 (80) sq.	25 (1/30)	1.7 (0.31)			
		40 (1/19)	4.1 (0.75)			
Three-Phase	3.54 (90) sq.	60 (1/12)	6.0 (1.1)			
		90 (1/8)	6.0 (1.1)			
	40.9 (104) sq.	200 (1/4)	11 (2.0)			

