AC Motor Systems BHF Series 200 W (1/4 HP) Frame Size: 4.09 in. sq. (104 mm sq.)

The **BHF** Series consists of a high-power 200 W (1/4 HP) AC speed-control motor combined with a dedicated inverter. Each motor comes pre-assembled with a gearhead.

Combination Type (Pre-assembled Gearmotors)

The combination type (Pre-assembled Gearmotors) comes with the motor and its dedicated gearhead already assembled. This simplifies installation in equipment. Motors and gearheads are also available separately so they can be on hand to make changes or repairs.

Features

Excellent speed stability

The combination of a dedicated inverter with a motor achieves excellent speed stability with a fluctuation of only \pm 3%. The inverter is already optimized for use with the gearmotor, so detail adjustments are not required to achieve accurate speed control.

Automatic control of an electromagnetic brake

The AC speed-control system with an electromagnetic brake allows automatic on/off control of the electromagnetic brake (power off activated type) on the inverter side. No longer will it be necessary to prepare a separate power supply or program a control sequence.

Smallest frame size among 200 W (1/4 HP) motors

The **BHF** Series achieves an output of 200 W (1/4 HP), the highest among Oriental Motor's standard AC motors, with the smallest frame size [4.09 inch (104 mm) square] in that class. This allows for a reduction in the size of your equipment.

Safety Standards and CE Marking

Standards		Certification Body	Standards File No.	CE Marking		
	UL1004					
	UL2111		E6/107			
	CSA C22.2 No.100	UL	E04197			
	CSA C22.2 No.77					
Motor	EN60950					
	EN60034-1		Low Voltage			
	EN60034-5	Conforms to EN	Directives /			
	IEC60034-11		EMC Directives			
	IEC60664-1					
	UL508C		E171460			
Invertor	CSA C22.2 No.14	UL	E171402			
mverter	EN50178	Conforms to EN/IEC Standards				
	EN60950					

 When the system is approved under various safety standards, the model names on the motor and inverter nameplates are the approved model names.
 List of Motor Combinations→Page B-85

• Details of Safety Standards→Page G-2

• The EMC value changes according to the wiring and layout. Therefore, the final EMC level must be checked with the motor/inverter incorporated in the user's equipment.

• Wiring length of up to 164 feet (50 m)

The wiring distance between the motor and inverter can be extended to a maximum of 164 feet (50 m).

Full-range functionality

The **BHF** Series offers a variety of functions such as alarm output, speed monitor output and individual acceleration/deceleration setting. The driver also has a built-in I/O power supply.

Wide product variations

Pre-assembled gearmotors are available in a right-angle shaft type equipped with a hypoid gear (hollow shaft, solid shaft) and a parallel shaft type. A wide range of gear ratios are available. An electromagnetic brake type is also available.

Global specifications

The **BHF** Series conforms to international power-supply voltage specifications, including single-phase 100-115 VAC, single-phase 200-230 VAC and three-phase 200-230 VAC. All units comply with the UL/CSA standards and bear the CE mark as proof of compliance with the Low Voltage Directive and EMC Directive.

System Configuration

The system configuration shown is an example. Other configurations are available.

Dimensions B-76 Connection and Operation B-81 Motor and Inverter Combinations B-8

Speed Control Systems

Introduction

BX

FBLI

AXU

AXH

界

ES

SC

Brushless DC Motor Systems AC Input DC Input

AC Motor Systems

Product Line Speed Control System

Туре	Power Supply Voltage	Model	Gear Ratio	
	Single-Phase		5~180	
Combination Type	100-115 VAC		5 100	
with Dight Angle	Single-Phase		5~180	
Hollow Shaft	200-230 VAC		5-100	
Honow Shart	Three-Phase	RHF62ST. DH	5~180	
	200-230 VAC		5 100	
	Single-Phase	BHE62AT-DA	5~180	
Combination Type	100-115 VAC		5.100	
	Single-Phase	RHF62CT.□PA	5~180	
Solid Shaft	200-230 VAC		5 100	
	Three-Phase	RHF62ST.□DA	5~180	
	200-230 VAC		5 100	
	Single-Phase	BHF62AT-	3~180	
	100-115 VAC		0 100	
Combination Type	Single-Phase	BHE62CT.	3~180	
with Parallel Shaft	200-230 VAC		0 100	
	Three-Phase	RHF62ST.	3~180	
	200-230 VAC		0 100	

Speed Control System with Electromagnetic Brake Combination Type

Туре	Power Supply Voltage	Model	Gear Ratio
	Single-Phase		5. 190
Combination Type	100-115 VAC		3~100
with Pight-Angle	Single-Phase		5. 190
Hollow Shaft	200-230 VAC		3~100
Honow Share	Three-Phase	BUE62CMT. DU	5~180
	200-230 VAC		5-100
Combination Type	Single-Phase		5. 190
	100-115 VAC		5-100
	Single-Phase		5~180
Solid Shaft	200-230 VAC		5-100
Solid Shart	Three-Phase	RHE62SMT.□DA	5~180
	200-230 VAC		3~100
	Single-Phase		3~180
	100-115 VAC	BIII02AMI-	5-100
Combination Type	Single-Phase		2.190
with Parallel Shaft	200-230 VAC		J~100
	Three-Phase	BHE62SMT.	3~180
	200-230 VAC	BIII 023/411-	5-100

• Enter the gear ratio in the box (\Box) within the model name.

Round Shaft Type

Туре	Power Supply	Model
	Single-Phase 100-115 VAC	BHF62AMT-A
Round Shaft Type	Single-Phase 200-230 VAC	BHF62CMT-A
	Three-Phase 200-230 VAC	BHF62SMT-A

3) *R***I** (€

Round Shaft Type

Туре	Power Supply	Model
Round Shaft Type	Single-Phase 100-115 VAC	BHF62AT-A
	Single-Phase 200-230 VAC	BHF62CT-A
	Three-Phase 200-230 VAC	BHF62ST-A

• Enter the gear ratio in the box (\Box) within the model name.

Specifications Speed Control System

BHF62ST- RH BHF62AT- RH BHF62CT- RH **Combination Type** BHF62AT-BHF62CT-BHF62ST-Model BHF62AT-BHF62CT-BHF62ST-Round Shaft Type BHF62AT-A BHF62CT-A BHF62ST-A **Output Power** HP (W) 1/4 (200) Rated Speed 1500 r/min Rated Torque 180 (1.27) oz-in (N·m) 180 (1.27) Starting Torque oz-in (N·m) 100~1500 r/min: 180 (1.27) Permissible Torque oz-in (N·m) 1800 r/min: 151 (1.07), 2400 r/min: 85 (0.6) Permissible Load Inertia J* oz-in2 (×10⁻⁴ kg·m²) 44 (8) Speed Control Range 100~2400 r/min Single-Phase 200-230 VAC±10% Three-Phase 200-230 VAC±10% Voltage Single-Phase 100-115 VAC±10% 50 Hz/60 Hz Frequency Power Source Rated Input Current 5.4 A 3.1 A 1.75 A Max. Input Current 4.9 A 2.7 A 8.3 A \pm 3% Max. (0 \sim Rated Torque, at 1500 r/min) Load Speed Regulation Voltage $\pm 3\%$ Max. (Power supply voltage $\pm 10\%$ at 1500 r/min with no load) \pm 3% Max. [32°F~122°F (0°C~+50°C) at 1500 r/min with no load] Temperature

* The permissible load inertia specified above is only applicable for the round shaft types. Permissible Load Inertia for the Combination Types → Page B-75

The values for each specification applies to the motor only.

• Enter the gear ratio in the box (
) within the model name.

Speed Control System with Electromagnetic Brake

Speed Control System	stem with Electrom	agnetic Brake		€) <i>LR</i> : <i>LR</i>					
Model	Combination Type	BHF62AMT-□RH BHF62AMT-□RA BHF62AMT-□	BHF62CMT-□RH BHF62CMT-□RA BHF62CMT-□	BHF62SMT-□RH BHF62SMT-□RA BHF62SMT-□					
	Round Shaft Type	BHF62AMT-A	BHF62CMT-A	BHF62SMT-A					
Output Power	HP (W)		1/4 (200)						
Rated Speed	r/min		1500						
Rated Torque	oz-in (N·m)		180 (1.27)						
Starting Torque	oz-in (N·m)		180 (1.27)						
Permissible Torque	oz-in (Nm)	100~1500 r/min: 180 (1.27)							
	02-111 (10-111)	1800 r/min: 151 (1.07), 2400 r/min: 85 (0.6)							
Permissible Load Inertia J*	oz-in² (×10 ⁻⁴ kg·m²)	44 (8)							
Speed Control Range	r/min	100~2400							
	Voltage	Single-Phase 100-115 VAC±10%	Single-Phase 200-230 VAC±10%	Three-Phase 200-230 VAC±10%					
Dower Course	Frequency	50 Hz/60 Hz							
Power Source	Rated Input Current	5.4 A	3.1 A	1.75 A					
	Max. Input Current	8.3 A	4.9 A	2.7 A					
	Load	±3°	% Max. (0 \sim Rated Torque, at 1500 r/	min)					
Speed Regulation	Voltage	\pm 3% Max. (Power supply voltage \pm 10% at 1500 r/min with no load)							
	Temperature	±3% Max. [32°F~122°F (0°C~+50°C) at 1500 r/min with no load]							
Electromagnetic Brake Holding	oz-in (Nm)	010 (1 5)							
Brake Torque	02-111 (N·111)		210 (1.3)						
Lowering Operation		Connecting the regeneration unit	[Accessories (Sold Separately)], Max	. output 100 W (5 minutes rating)					

* The permissible load inertia specified above is only applicable for the round shaft types. Permissible Load Inertia for the Combination Types → Page B-75

• The values for each specification applies to the motor only.

• Enter the gear ratio in the box (
) within the model name.

Common Specifications Speed Control System / Speed Control System with Electromagnetic Brake

Item	Specifications							
Acceleration/Deceleration Time	0.1~25 seconds (at 1000 r/min)							
Speed Control Method	Any one of the following methods:							
	1. By built-in potentiometer (1 piece) 2. By external potentiometer (20 k Ω 1/4 W) 3. By DC voltage control (0~5 VDC)							
	Photocoupler input Input impedance 2.4 k Ω							
Input Signal	Operates at 12 VDC							
	Common to CW/CCW, Speed setting mode selection, Slow down, Alarm reset							
Output Signal	Open collector output External use conditions 26.4 VDC, 10 mA max.							
	Common to SPEED OUT (12P/R), ALARM OUT							
	If any of the protective functions of the inverter are triggered, the ALM output will be turned off and the ALM LED on the front panel of the							
	inverter will blink or turn on while the motor current is interrupted to stop the motor.							
	Overload protection: A load exceeding the rated torque has been applied to the motor for 5 seconds or more.							
	• Overvoltage protection: The voltage applied to the inverter has exceeded the rated voltage by approximately 30% or more.							
Protection Functions	The motor is being operated beyond the lowering operation's ability.							
	Overcurrent protection: An excessive current is flowing within the inverter.							
	• Undervoltage protection: The power-supply voltage has dropped below the rated voltage by approximately 15% or more.							
	• Circuit overheat protection: The ambient operating temperature for the inverter has exceeded its upper limit.							
	Motor open circuit protection: The motor cable has an open circuit or improper connection.							
	• EEPROM Error: An error was detected in the EEPROM.							
Rating	Continuous							
Motor Insulation Class	Class B (266°F [130°C])							

Introduction

ВХ

FBLII

AXU

AXH

쀽

S

General Specifications

Item	Motor	Inverter
Insulation Resistance	100 M Ω or more when measured by a 500 VDC megger between the windings and the frame after rated motor operation under normal ambient temperature and humidity.	100 M Ω or more when measured by a 500 VDC megger between the power supply input terminal and the Protective Earth terminal and between the power supply input terminal and the I/O terminal after
	annient temperature and numuity.	humidity.
Dielectric Strength	Sufficient to withstand 1.5 kV at 50 Hz and 60 Hz applied between the windings and the frame for 1 minute after rated motor operation under normal ambient temperature and humidity.	Sufficient to withstand 1.5 kV (3 kV) at 50 Hz and 60 Hz applied between the power supply input terminal and the Protective Earth terminal (between the power supply input terminal and the I/O terminal) for 1 minute after continuous operation under normal ambient temperature and humidity.
Temperature Rise	126°F (70°C) or less in the coil, as measured by the resistance change method after rated operation with gearhead or similar heat radiation plate* installed.	
Ambient Temperature	14°F~104°F (-10°C to +40°C) 14°F~122°F (-10°C to +50°C) for 100/200 VAC (nonfreezing)	32°F~122°F (0°C~+50°C) (nonfreezing)
Ambient Humidity	85% maximum (noncondensing)	85% maximum (noncondensing)
Degree of Protection	IP54 (excluding the motor-installation surface of the round shaft type)	IP10

* Size of heat radiation plate: 9.06 inch × 9.06 inch (230 mm × 230 mm), 0.20 inch (5 mm) in thickness (material: aluminum)

Permissible Torque for Combination Type Bight-Angle Shaft

Unit = Upper values: Ib-in/Lower values							values: N·m	
Model	Gear Ratio Motor Output Speed	5	9	15	30	50	100	180
	100~1500 r/min	40	73	123	240	350	480	530
		4.6	8.3	13.9	27.8	40	54.5	60
	1800 r/min	34	61	103	200	320	480	530
		3.9	7	11.7	23.4	37	54.5	60
	0.400	19.4	34	58	115	193	380	530
	2400 1/11111	2.2	3.9	6.6	13.1	21.9	43	60

• Enter the gear ratio in the box (
) within the model name.

• Direction of rotation of the motor and that of the gear output shaft are the opposite.

Parallel Shaft

						onne opp		5, 201101	1414001 11 11
Model	Gear Ratio Motor Output Speed	3	5	9	15	30	50	100	180
	100 1500 r/min	30	50	91	145	290	350	350	350
	100~15001/1111	3.4	5.7	10.3	16.4	32.8	40	40	40
	1000	25	42	76	122	240	350	350	350
BHF62ST, BHF62SMT	1000 1/11111	2.9	4.8	8.7	13.8	27.6	40	40	40
	0.400 r/min	14.1	23	43	68	137	210	350	350
	2400 r/min	1.6	2.7	4.9	7.7	15.5	24.3	40	40

• Enter the gear ratio in the box (\Box) within the model name.

• A colored background indicates gear shaft rotation in the same direction as the motor shaft; a white background indicates rotation in the opposite direction.

Permissible Overhung Load and Permissible Thrust Load

The overhung load and thrust load of the gearhead's output shaft affect the bearing life. Make sure the overhung load and thrust load do not exceed the values shown in the table below.

		Permissible Overh	Dermissible Thrust Load	
Model Gear Ratio		from the tip of the shaft	from the tip of the shaft	
	0.39 inch (10 mm)	0.79 inch (20 mm)	ID. (N)	
BHF62 T- RH	5~30	270 (1200)	240 (1100)	67 (200)
BHF62 MT- RH	50~180	490 (2200)	450 (2000)	07 (300)
BHF62 T- RA	5~30	200 (900)	220 (1000)	67 (200)
BHF62 MT- RA	50~180	380 (1700)	410 (1850)	67 (300)
BHF62 T-	3~30	123 (550)	180 (800)	45 (200)
BHF62 MT-	50~180	146 (650)	220 (1000)	43 (200)

• With the hollow shaft type, the permissible overhung load is measured from the flange-mounting surface.

• Enter the voltage $(\mathbf{A}, \mathbf{C}, \mathbf{S})$ in the box (\square) .

• Enter the gear ratio in the box (
) within the model name.

Permissible Overhung Load and Thrust Load for Round Shaft Type→ Page A-11

Unit = Upper values: Ib-in/Lower values: N-m

Permissible Load Inertia J for the Combination Type

				Unit = Up	oper values:	0Z-IN-/LOW	er values: \times	IU * Kg·m*
Model \ Gear Ratio	3	5	9	15	30	50	100	180
BHF62_TRH, BHF62_TRA								
BHF62_MTRH, BHF62_MTRA	98	270	880	2400	9800	27000	27000	27000
BHF62_T-	18	50	162	450	1800	5000	5000	5000
BHF62 MT-								

• Enter the voltage $(\mathbf{A}, \mathbf{C}, \mathbf{S})$ in the box (\square) .

• Enter the gear ratio in the box (
) within the model name.

Speed — Torque Characteristics

The characteristics shown below are only applicable for the motors only. Continuous Duty Region: Continuous operation is possible in this region. Common to **BHF** Series

Vertical Drive (Gravitational Operation)

The **BHF** Series achieves stable speed control during gravitational operation.

During vertical movement (gravitational operation), such as the application illustrated below, normally an external force causes the motor to rotate and function as a power generator. If this energy is applied to the inverter, an error will occur. A regeneration unit (sold separately) can convert regenerative energy into thermal energy for dissipation. Use the optional regeneration unit **EPRC-400P** when using the motor for vertical drive applications or when braking a large inertial load quickly.

Regenerative power: 100 W (5-minute rating) Instantaneous regenerative power: 300 W

Regenerative power

The regenerative power may be calculated roughly using the equation shown below for reference.

Regenerative power (W) = 0.1047 \times TL [N·m] \times N [r/min] TL: Load torque N: Speed

* Use the electromagnetic-brake type for gravitational operation.

Gravitational operation ability

Use the time shown below as a guideline when performing continuous gravitational operation:

Operating range in which regenerative power is 100 W or less Allowable time for continuous gravitational operation: 1 minute, 30% ED

Coperating range in which regenerative power exceeds 100 W Allowable time for continuous gravitational operation: 1 minute, 20% ED

Example: 1 minute, 30%= Under gravitational operation: 60 seconds* Non-gravitational operation: 140 seconds

* 60 seconds (1 minute) is the maximum continuous gravitational operation time allowed.

Introduction

BX

FBLI

AXU

AXH

쀡

ι.

SS

Dimensions Scale 1/4, Unit = inch (mm)

Mounting screws are included with the combination type parallel shaft. \rightarrow Page B-133 Enter the gear ratio in the box (\Box) within the model name.

Motor/Gearhead (Combination Type with Right-Angle Hollow Shaft)
 BHF62AT-_RH, BHF62CT-_RH, BHF62ST-_RH
 Motor Model: BHM62T-G2
 Gearhead Model: BH6G2-_RH
 Weight: 22 lb. (10.0 kg)

DXF A301

●Use cable (VCTF) with a diameter of ϕ **0.24** inch (ϕ 6 mm) $\sim \phi$ **0.47** inch (ϕ 12 mm). ●Details of Terminal Box → Page A-224

●Key (Included) (Scale 1/2)

Motor/Gearhead (Combination Type with Parallel Shaft) BHF62AT- , BHF62CT- , BHF62ST-Motor Model: BHM62T-G2 Gearhead Model: BH6G2-

Weight: 17.6 lb. (8.0 kg) **DXF** A304

•Use cable (VCTF) with a diameter of ϕ 0.24 inch (ϕ 6 mm) $\sim \phi$ 0.47 inch (ϕ 12 mm). ●Details of Terminal Box → Page A-224

AC Motor Systems

Round Shaft Type 1.10 Max. 2.95 (75) 0.35 (9) 2.44 BHF62AT-A, BHF62CT-A, BHF62ST-A (62) (28 Max.) Motor Model: BHM62T-A **1.69** (43) Weight: 11 lb. (5.0 kg) <u>0.5512-0.007</u> DXF A308 (**4**14-0.018) œ Ø 0.51 (13) 1.18 **□4.06** (**□**103) **φ3.7008**_0.0014 (30) $(\Phi 94 - 0.035)$ \$4.72±0.02 (\$120=0.5) Ø Ø **0.41** (10.5) 0.08 (2) **Φ0.335** (Φ8.5) 6.30 (160) 1.46(37) **4.09** (**1**04) -4 Holes

•Use cable (VCTF) with a diameter of ϕ 0.24 inch (ϕ 6 mm) $\sim \phi$ 0.47 inch (ϕ 12 mm). ●Details of Terminal Box → Page A-224

Motor/Gearhead (Combination Type with Right-Angle Hollow Shaft) BHF62AMT- RH, BHF62CMT- RH, BHF62SMT- RH Motor Model: BHM62MT-G2

Gearhead Model: BH6G2-□RH Weight: 25.3 lb. (11.5 kg) **DXF** A384

Section AA' (Detail drawing of output shaft)

•Use cable (VCTF) with a diameter of ϕ 0.32 inch (ϕ 8 mm) $\sim \phi$ 0.47 inch (ϕ 12 mm). ●Details of Terminal Box → Page A-224

•Key (Included) (Scale 1/2)

•Use cable (VCTF) with a diameter of ϕ 0.32 inch (ϕ 8 mm) $\sim \phi$ 0.47 inch (ϕ 12 mm). ●Details of Terminal Box → Page A-224

2.91 (74)

 (\oplus)

φ**0.335** (φ8.5) -4 Holes

φ4.72±0.02

(\$120 ±0.5)

ÌØ

58)

2.28

□4.09 (□104)

Ø

Ø

Speed Control Systems

Brushless DC Motor Systems AC Input DC Input

AC Motor Systems

Round Shaft Type

●Use cable (VCTF) with a diameter of ϕ **0.32** inch (ϕ 8 mm) $\sim \phi$ **0.47** inch (ϕ 12 mm). ●Details of Terminal Box → Page A-224

Inverter

Mounting Tab (1 set of 2 pieces included)

Mounting Method for Hollow Shaft Gearheads

These diagrams show how to mount loads depending on the shape of the shaft.

The tolerance of the inner diameter for the hollow shaft is finished as H8, and "key slot" processing is given to mount the load shaft. The recommended tolerance of the load shaft is h7. Use the key provided with the product by fastening it to the shaft. Apply a coating of molybdenum disulfide or similar grease to the inner diameter of the load shaft to prevent binding. Recommended load shaft dimensions are shown to the right.

Stepped-Down Shaft

Recommended size of inner diameter for the hollow shaft and load shaft

	Unit=inch (mm)
Model	BH6G2RH
Inner diameter of hollow shaft H8	$ \Phi 0.9843^{+0.0013}_{0} (\Phi 25^{+0.033}_{0}) $
Recommended load shaft diameter h7	$\Phi 0.9843 ^{0}_{-0.0008} (\Phi 25 ^{0}_{-0.021})$

• Replace the safety cover after installing the load shaft.

Note:

Be careful not to apply a shock to the hollow shaft when mounting a load. It may
damage the bearing inside the gearhead.

Straight Load Shaft

B-80

Speed Control Systems

Introduction

ВХ

FBLII

AXU

AXH

쀢

S

SC

AC Motor Systems

Connection and Operation

The unit shown above uses a single-phase 100/115 V power-supply input.

-	LED Display				
	Display	Function	Lighting Condition		
	POWER	Power indicator	Turns on (green) while power is being supplied.		
	ALARM	Alarm indicator	Turns on (red) or blinks when an alarm is triggered.		

- Switch

Set the switch to "H" if the cable between the motor and inverter is less than 32.8 ft. (10 m) in length. Set it to "L" if the cable length exceeds 32.8 ft. (10 m).

input/output Signal Terminals Block				
Display	Signal	Function and Operation		
IN-COM	Ground terminal for input signals	als Ground terminal for input signals.		
CW	Clockwise rotation input	Clockwise rotation/stop selection input		
CCW	Counterclockwise rotation input	Counterclockwise rotation/stop selection input		
MO	Speed-setting mode selection input	Built-in/external speed-setting selection input		
NC	-			
NC	-			
SD	Slow down input	Instantaneous stop/slow down stop selection input		
FREE	Electromagnetic brake release input	Electromagnetic brake releases/locks selection input		
RST	Alarm reset input	This input is used to reset the alarm while in an energized state in the event any protective function of the inverter is activated.		
TP	Thermal signal input	This input is used to connect the lead wire of the regeneration unit's internal thermal protector when the braking regeneration unit (sold separately) is used.		
H, M, L	Speed-setting mode selection input	These are connected for speed control via the external speed potentiometer or external DC voltage.		
S-MON	Speed monitor output	This output is used to monitor the motor speed. Pulse signals at a rate of 12 pulses per revolution of the motor output shaft.		
ALM	Alarm output	When the protective function is activated, this output is set to OFF ("H") and the motor stops.		
0-COM	Ground terminal for output signals	Ground terminal for output signals.		

- ***1** This should be connected only when using a regeneration unit.
- *2 This should be connected only for a speed control system with an electromagnetic brake.
- *3 The electromagnetic brake release input can be used only with a speed control system with electromagnetic brake. Refer to page A-224 BH Series with electromagnetic brake, for details of terminal box.

Notes:

- If the wiring between the motor and inverter needs to be extended by 32.8 ft. (10 m) or more, use a polyethylene-insulated electric wire of AWG16 or larger. Do not connect more than one cable or allow the overall wiring length to exceed 164 ft. (50 m). Doing so may result in a malfunction.
- With the electromagnetic brake type, setting the wiring length too long delays the operation of the electromagnetic brake [by approx. 100 ms at a wiring length of 164 ft. (50 m)]. To minimize the delay time, use separate cables for the electromagnetic brake cable and motor cable.
- Separate the signal and motor cables from noise-generating equipment or power lines.
- After connecting each cable to the terminal block, be sure to install the connector cover.

Speed Control Systems

Introduction

BX

FBL II

AXU

AXH

뿔

S

SC

DC Input

Connecting the motor and inverter

A motor cable is not supplied with the product. Please provide the appropriate cable.

Connecting the Motor

Appropriate lead wires

AWG 18 min.

Terminals (Use a crimp terminal for the electromagnetic brake type.) Round Terminal with Insulation U-Shape Terminal with Insulation

Protective Earth

Round Terminal with Insulation

Timing Chart

*1 The motor will stop if the CW and CCW inputs are simultaneously turned to ON ("L" level).

*2 When the motor runs and/or stops in a short cycle, the electromagnetic brake may be left released if a shorter time is set for the acceleration/deceleration time.

• Connecting the Inverter

Power input terminals, motor connection terminals

Appropriate lead wires AWG 18 min.

Terminals

Round Terminal with Insulation

Protective Earth Bound Terminal with Insulation

I/O signal terminal

When a crimp terminal should be used, use one of the following terminals:

Phoenix Contact AI 0.25-6 Applicable wiring gauge: AWG 24 AI 0.34-6 Applicable wiring gauge: AWG 22 AI 0.5-6 Applicable wiring gauge: AWG 20

- All run, stop, direction change and speed change operations can be controlled by the CW, CCW, M0, and SD input signals.
- If the CW input is set to ON ("L" level), the motor rotates in a clockwise direction as viewed from the shaft end of the motor; if the CW input is set to OFF ("H" level), the motor stops. If the CCW input is set to ON ("L" level), the motor rotates in a counterclockwise direction as viewed from the shaft end of the motor; if the CCW input is set to OFF ("H" level), the motor stops. The acceleration time is set by the built-in acceleration potentiometer (SS).
- If the SD input is set to ON ("L" level), the deceleration time is the value set by the built-in deceleration potentiometer (SD.)
- Turning the M0 input to ON ("L" level) selects the speed set by the external speed potentiometer. Turning the input to OFF ("H" level) causes the motor to operate at the speed set by the built-in speed potentiometer. The timing chart shown at left is based on a built-in speed-potentiometer setting of 500 r/min and an external speed-potentiometer setting of 1500 r/min.
- To release the electromagnetic brake when the motor is stopped, turn the FREE (electromagnetic brake release) input to ON ("L" level). This releases the electromagnetic brake and allows the motor's output shaft to turn freely. (This function is available only with a speed control system with an electromagnetic brake.)

Note:

While the motor is running, the temperature of the motor case should not exceed 194°F (90°C).

R-76 Connection and Operation R-81 Motor and Inverter Combinations R-8

Input Signal Circuit

Input Circuit

Common to CW, CCW and SLOW DOWN, FREE*, RST inputs.

The FREE input is used only with a speed control system with electromagnetic brake.

Connection Example for Input Signals

Controlled by Small Capacity Relays

_	nverter		
	I-COM CW	ON OFF	OFF: Stop ON: CW Rotation OFF: Stop
	CCW	ON OFF	ON: CCW Rotation OFF: Built-in speed potentiometer ON: External speed potentiometer
	SD	ON OFF	OFF: Brake ON: Slow down
	FREE*		OFF: Lock
	RST		ON: Release ON: Reset

 Use a small capacity contact point type relay capable of switching 24 VDC, 5 mA.

The FREE input is used only with a speed control system with electromagnetic brake.

Electronic Input Control

Output Signal Circuit Output Circuit

Common to S-MON, ALM outputs.

Connection Example for Output Signals

 An external power source is required since the circuit has an open-collector output configuration as shown in the figure above. There is no need to connect an external power source if no signal outputs are used. Use an external power source of 26.4 VDC or below. Connect a limit resistance according to the power-supply voltage so that the current level doesn't exceed 10 mA.

Speed monitor output: Pulse signals are output at a rate at 12 pulses per revolution of the motor output shaft. (Note that this is monitoring of the speed

command issued from the inverter to the motor, not that of the speed measured at the motor's output shaft.)

Motor speed: <u>S-MON output frequency [Hz]</u> × 60 [r/min] 12

Alarm output: This signal is output when a protection function for overload, circuit overheat, overvoltage, undervoltage, overcurrent or EEPROM error has been activated. When an alarm signal is output, this output is turned to OFF ("H" level) between the ALARM OUT and GND terminals.

Introduction

BX

FBL II

AXU

AXH

쀡

5

SS

AC Motor Systems

Method of Speed Setting

Speed Control by Built-in Potentiometer

The Built-in speed potentiometer is selected when the MO (speed-setting mode selection input) is set to OFF ("H" level). Turning the Built-in speed potentiometer clockwise sets a faster speed, while turning it counterclockwise brings the motor to a stop.

Speed Control by External Potentiometer

The external speed potentiometer can be used when the MO (speed-setting mode selection input) is set to ON ("L" level). When the optional external speed potentiometer is used, connect it as illustrated below. Turning the external speed potentiometer clockwise sets a faster speed.

Speed Control by External DC Voltage

External DC voltage can be used when the MO (speedsetting mode selection input) is set to ON ("L" level). To set the motor speed via external DC voltage, connect a DC power supply as illustrated below. Raising the DC voltage sets a faster speed.

List of Motor and Inverter Combinations

Model name for motor/control unit combinations are shown below

Combination Type Speed Control System

Model	Motor	Gearhead	Inverter
BHF62AT- RH		BH6G2-□RH	
BHF62AT- RA		BH6G2-□RA	FSP200-1
BHF62AT-		BH6G2-	
BHF62CT- RH		BH6G2-□RH	
BHF62CT- RA	BHM62T-G2	BH6G2-□RA	FSP200-2
BHF62CT-		BH6G2-	
BHF62STRH		BH6G2-□RH	
BHF62ST-		BH6G2-□RA	FSP200-3
BHF62ST-		BH6G2-	

• Enter the gear ratio in the box (\Box) within the model name.

Round Shaft Speed Control System

Model	Motor	Inverter
BHF62AT-A		FSP200-1
BHF62CT-A	BHM62T-A	FSP200-2
BHF62ST-A	1	FSP200-3

Combination Type Speed Control System with Electromagnetic Brake

Model	Motor	Gearhead	Inverter
BHF62AMT- RH		BH6G2-□RH	
BHF62AMT-	BHM62MT-G2	BH6G2-□RA	FSP200-1
BHF62AMT-		BH6G2-	
BHF62CMT-		BH6G2-□RH	
BHF62CMT-		BH6G2-⊡RA	FSP200-2
BHF62CMT-		BH6G2-	
BHF62SMT- RH		BH6G2-□RH	
BHF62SMT-		BH6G2-□RA	FSP200-3
BHF62SMT-		BH6G2-	

• Enter the gear ratio in the box (\Box) within the model name.

Round Shaft Speed Control System with Electromagnetic Brake

Model	Motor	Inverter	
BHF62AMT-A		FSP200-1	
BHF62CMT-A	BHM62MT-A	FSP200-2	
BHF62SMT-A		FSP200-3	