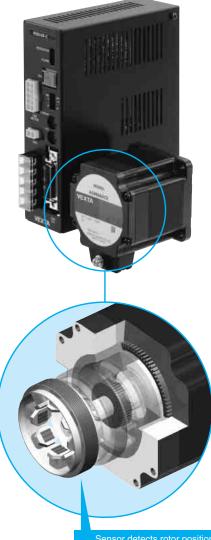
Oriental motor

(RoHS) RoHS-Compliant Closed Loop Stepping Motor and Driver Package

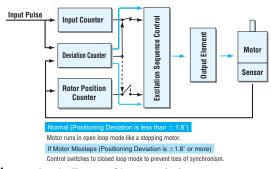
AS Series **ASC** Series

(RoHS) RoHS-Compliant **Closed Loop Stepping Motor and Driver Package** *Aster* **AS** Series

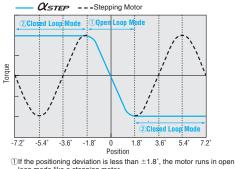
The *Qstep* is an innovative stepping motor unit that adopts a closed-loop control to eliminate misstep. In the **QSTEP**, the user friendliness of a stepping motor is combined with a range of new functions for improved reliability of your equipment.



Features

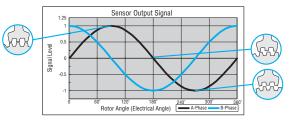

Thanks to Closed Loop Control, There is No Loss of Synchronism *Ustep* does not lose synchronism even when subjected to abrupt load fluctuation or acceleration.

A newly developed rotor position detection sensor constantly monitors the motor movement. If synchronism is about to be lost, closed loop control is used, so there is no need to worry about loss of steps. When the successive overload is given, α_{step} outputs an alarm signal. The reliability of *Xstep* is as high as that of a servo motor.


CLETEP is designed as a "package" consisting of a motor and a driver.

♦ XSTEP Control Diagram

○ *XsteP* Angle-Torque Characteristics



loop mode like a stepping motor. (2)If the positioning deviation is $\pm 1.8^{\circ}$ or more, the motor runs in closed loop mode and the position is corrected by exciting the motor windings to generate maximum torque based on the rotor position.

♦ The Newly Developed Sensor to Detect Rotor's Position The newly developed $\mathcal{A}_{\text{STEP}}$ rotor position detection sensor uses the change in inductance caused by change in the distance between the stator teeth and the teeth on the sensor rotor to detect rotor position.

Features

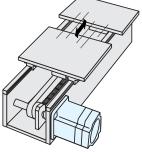
- This structure can be made small and thin, so the overall size of the motor can be reduced.
- High resolution
- This structure does not use electronic parts, so it is not affected by heat or vibration.

Features

Product Line Dimensions DC Input ASC Series

Accessories Stepping Motor Controllers

High Response

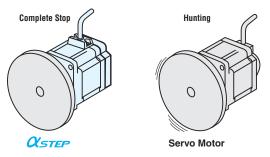

Like conventional stepping motors *Astep* operates in synchronism with command pulses. This makes possible short stroke positioning in a short time.

ł	1	1	1				I.	
È								
	h							
					Mote	or Mo	veme	nt nt
	 ~							
					Puls	e Inpu	i it	
			Po	sition	ing Co	omple	tion S	igna

Measurement Condition: Feed 1/5 rotation Load inertia 250×10⁻⁷ kg·m² (J) (1.365 oz-in2)

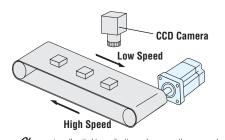
No Gain Tuning

Gain tuning for servo motors is critical, troublesome and time-consuming. Since the *X*step operates like a stepping motor, there are no gain tuning requirements. Low rigidity applications, such as a belt and pulley system, are ideal for ASTEP.



• The \mathcal{U}_{STEP} Complies with International Safety Standards

The AS Series is recognized with the UL/CSA standards and conforms to EN standard. [The AS46 [the motor frame size of 42 mm (1.65 in.)] is recognized with the UL standard and conforms to EN standard.] The CE marking certifies compliance with the EMC and Low Voltage Directives.


No Hunting

Since *Xstep* is a stepping motor, it has no hunting problem. Therefore, when it stops, its position is completely stable and does not fluctuate. $\mathcal{A}_{\text{STEP}}$ is ideal for applications in which vibration would be a problem.

Low Vibration at Low Speed

The driver employs advanced technology that produces smoothness comparable to a microstepping driver. Its vibration level is incredibly low, even when operating in the low speed range. When frequent changes from low to high (or vice versa) speed operations are required, the use of the Resolution Select Function solves the problem. *Xstep* provides resolution as low as 0.036° per step without any damping mechanism or other mechanical device.

Motor/Driver Connection with a Single Cable

Olympice requires only one cable for connection between the motor and the driver. Wiring is much simpler compared with conventional servo motors requiring two cables, one for motor and the other for encoder. The cable can be extended to a maximum of 20 m (65.6 ft.) [10 m (32.8 ft.) for flexible extension cable], so the motor and the driver can be installed in locations far apart.

A Full Lineup Including Geared Types and IP65 Rated Motor Type

The geared types enable driving of large inertial loads and positioning at higher accuracy, while the IP65 rated motor type provides ingress protection against dust and water.

The *Qstep* offers a wide range of models meeting the needs of various applications.

Standard Type IP65 Rated Motor

*A dedicated motor cable for IP65 rated motor (sold separately) is needed to connect the IP65 rated motor and driver.

Improved Motor

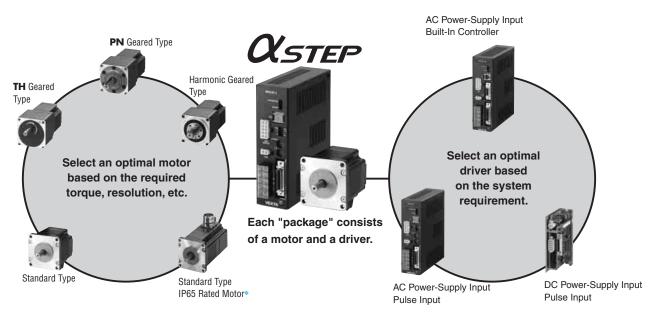
· Protective Earth Terminal

[Excluding motors with a frame size of 42 mm (1.65 in.)]

• Twice the Motor Life (compared with a conventional model) The life of a motor is affected by its bearing.

The *Olstep* achieves approx. twice the life of a conventional motor by adopting a modified bearing. [Available only with the standard type and standard electromagnetic-brake type with a frame size of 60 or 85 mm (2.36 or 3.35 in.).]

(RoHS) RoHS-Compliant


The *Q***STEP** conforms to the RoHS Directive that prohibits the use of six chemical substances including lead and cadmium.

RoHS (Restriction of Hazardous Substances) Directive: Directive on restriction of the use of certain hazardous substances in electrical and electronic equipment (2002/95/EC). The RoHS Directive prohibits the use of six chemical substances in electrical and electronic products sold in the E.U. member countries on or after July 1, 2006. The six controlled substances are: lead, hexavalent chromium, cadmium, mercury and two specific brominated flame-retardants (PBB and PBDE).

Olympication is well-suited to applications where smooth movement or stability is required, such as where a camera is used to monitor the quality of a product.

A Full Lineup of α_{step} Series

You are sure to find a unit that perfectly matches the needs of your specific application.

Motors equipped with an electromagnetic *A dedicated IP65 motor cable (sold separately) is needed to **brake are also available.** (An electromagnetic brake is not available on certain types.)

Characteristics Comparison for Motors and Geared Motors

	Motor Type Geared Type	Features	Permissible Torque Maximum Torque [N·m (lb-in)]	Backlash [min]	Basic Resolution [deg/step]	Output Shaft Speed [r/min]
	Standard	• Basic model of <i>Xster</i> motor and driver system	Maximum Holding Torque 4 (35)		0.36	() 4000
	Standard Type IP65 Rated Motor	 The IP65 rated motor offering ingress protection against dust and water. 	Maximum Holding Torque 4 (35)		0.36	() 4000
Low backlash	TH Geared (Parallel Shaft)	• A wide variety of low gear ratio, high-speed operation • Gear ratio: 3.6:1, 7.2:1, 10:1, 20:1, 30:1	12 (106)	45	0.012	500
cklash	PN Geared (Planetary)	 High speed (low gear ratio), high positioning precision High permissible/maximum torque Wide variety of gear ratios for selecting the desired step angle. (resolution) Centered output shaft Gear ratio: 5:1, 7.2:1, 10:1, 25:1, 36:1, 50:1 	Permissible Maximum Torque Torque 37 (320) 60 (530)	3	0.0072	600
Non-backlash	Harmonic Geared (Harmonic Drive)	 High positioning precision High permissible/maximum torque High gear ratio, high resolution Centered output shaft Gear ratio: 50:1, 100:1 	Permissible Maximum Torque Torque 37 (320) 55 (480)	0	0.0036	70

Note:

The values shown above must be used as reference. These values vary depending on the frame size and gear ratio.

• Each series offers various motor frame sizes in accordance with the motor type and power supply voltage, as shown below.	
[□42 (□1.65): indicates a motor frame size of 42 mm (1.65 in.).]	

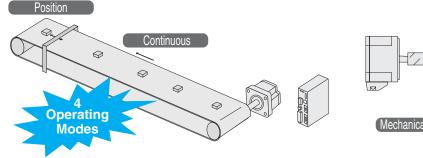
	Power Supply Voltage	Standard Type	Standard Type IP65 Rated Motor	TH Geared Type	PN Geared Type	Harmonic Geared Type
AC Input AS Series	Single-Phase 100-115 VAC	□42 (□1.65) □60 (□2.36) □85 (□3.35)	□60 (□2.36) □85 (□3.35)	□42 (□1.65) □60 (□2.36) □90 (□3.54)	□42 (□1.65) □60 (□2.36) □90 (□3.54)	□42 (□1.65) □60 (□2.36) □90 (□3.54)
Pulse Input Package	Single-Phase 200-230 VAC	□60 (□2.36) □85 (□3.35)	□60 (□2.36) □85 (□3.35)	□60 (□2.36) □90 (□3.54)	□60 (□2.36) □90 (□3.54)	□60 (□2.36) □90 (□3.54)
Built-In Controller Package	Three-Phase 200-230 VAC	□60 (□2.36) □85 (□3.35)	□60 (□2.36) □85 (□3.35)	□60 (□2.36) □90 (□3.54)	□60 (□2.36) □90 (□3.54)	□60 (□2.36) □90 (□3.54)
DC Input ASC Series Pulse Input Package	24 VDC	□28 (□1.10) □42 (□1.65) □60 (□2.36)	_	□28 (□1.10) □42 (□1.65) □60 (□2.36)	□28 (□1.10) □42 (□1.65) □60 (□2.36)	□28 (□1.10) □42 (□1.65) □60 (□2.36)

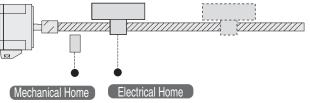
• A pulse input package and a built-in controller package are available.

White background: A pulse input package is available.

•All the packages can be available motor with electromagnetic brake. [Except for the standard type IP65 rated motor and ASC Series with a motor frame size of 28 mm (1.10 in.).]

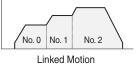
Two Types of Drivers	AC Input	DC Input		
Pulse Input Various motor controls can be performed using a pulse generator provided by the user.			Motor Driver Pulse Generator	Programmable Controller
Built-In Controller The built-in pulse generation function allows the motor to be driven via a directly connected programmable controller. Since no separate pulse generator is required, the drivers of this type save space, simplify wiring, and also allow the number of axes to be increased with ease.			NotorDriver	Programmable Controller or Personal Computer


Features of Built-In Controller Package


The built-in controller driver has an integrated controller which ensures a simple, efficient solution for stepping motor applications.

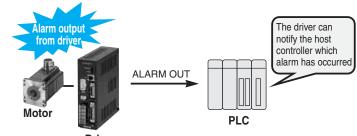
Intelligent, integrated, and ideal for technology's increasing demand on motion control, the built-in controller is computer-programmable via an RS-232C connection.

Operating Modes

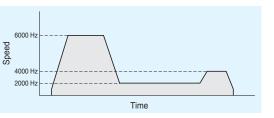


Linked Motion Capability

Speed Change on the Fly



When a START signal is received motions 0, 1 and 2 are executed without stopping between each one.


Alarm Functions

The driver can flash LEDs to indicate which alarm has occurred.

Driver

Daisy Chain

The running speed of the motor can be changed while the motor is in motion.

Up to 36 units can be daisy chained via customer supplied cable.

Position Control

Incremental mode (relative distance specification)/Absolute mode (absolute position specification)
 Linked operation (a maximum of four motion profiles may be linked)
 Data range (in pulses): -8 388 608 to +8 388 607
 Operating speed: 10 Hz to 500 kHz (set in 1 Hz increments)

Four Operation Modes

- 1. Positioning
- 2. Mechanical home seeking (+LS, -LS, HOMELS)
- 3. Continuous
- 4. Electrical home seeking

General Inputs/Outputs

8 Programmable Inputs

8 Programmable Outputs

Daisy Chain Capability

OUp to 36 units can be daisy chained with unique device ID's

Communication

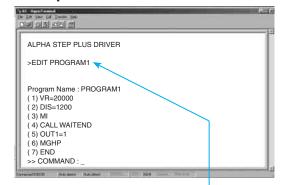
ASCII based commands
Conforms to RS-232C communication specifications
Start-stop asynchronous transmission method
Transmission speed: 9600 bps
Data length: 8 bits, 1 stop bit, no parity
Protocol: TTY (CR+LF)
Modular 4-pin connector

Program Memory


Maximum number of programs: 14 (including STARTUP)
Maximum lines per program: 64
Commands per line: 1
Program variables: 26 (A to Z)

Built-In Functions

Selectable motor-resolution
Run and stop current values
Speed-filter set value
Motor rotation direction
Emergency stop


Sensor logic
Over-travel limits
Software over-travel
Alarm history
Syntax checking

Display values
 Incremental moves
 I/O status

Using Windows HyperTerminal[®], programming the built-in controller driver is a simple task.

Example: "PROGRAM1"

PROGRAM1 Definition

Operating Speed: 20000 Hz

Move Distance: 1200 pulses

- Call a subroutine that waits for the motor to stop before moving on to the next command
- Turn On Output #1
- Seek the Mechanical Home Position in the Positive Direction
- End of Program

Safety Standards and CE Marking

Model	Standards	Certification Body	Standards File No.	CE Marking
Motor	UL 1004 UL 2111 CSA C22.2 No.100 ^{*1} CSA C22.2 No.77 ^{*1}	UL	E64199	
WOTO	EN 60950-1 EN 60034-1 EN 60034-5 IEC 60664-1	Conform to EN Standards		Low Voltage Directives EMC Directives
Driver	UL 508C*2 CSA C22.2 No.14	UL E171462		
Driver	EN 60950-1*3 EN 50178	Conf	orm to EN Standards	

When the system is approved under various safety standards, the model names on the motor and driver nameplates are the approved model names.

List of Motor and Driver Combinations → Pages 46 and 47

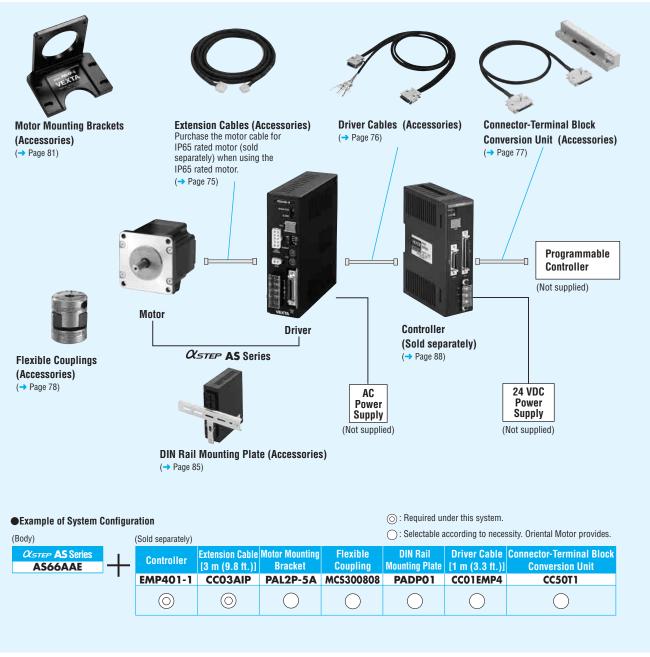
The EMC value changes according to the wiring and layout. Therefore, the final EMC level must be checked with the motor/driver incorporated in the user's equipment.

*1 Except for AS46 [Motor Frame Size 42 mm (1.65 in.)]

*2 Maximum Ambient Temperature for UL

Pulse Input: $+50^{\circ}C$ ($+122^{\circ}F$), Built-In Controller: $+40^{\circ}C$ ($+104^{\circ}F$)

*3 EN 60950-1 (Certified Pulse Input only)


Line-up

Functions System Configuration

System Configuration

Pulse Input Package

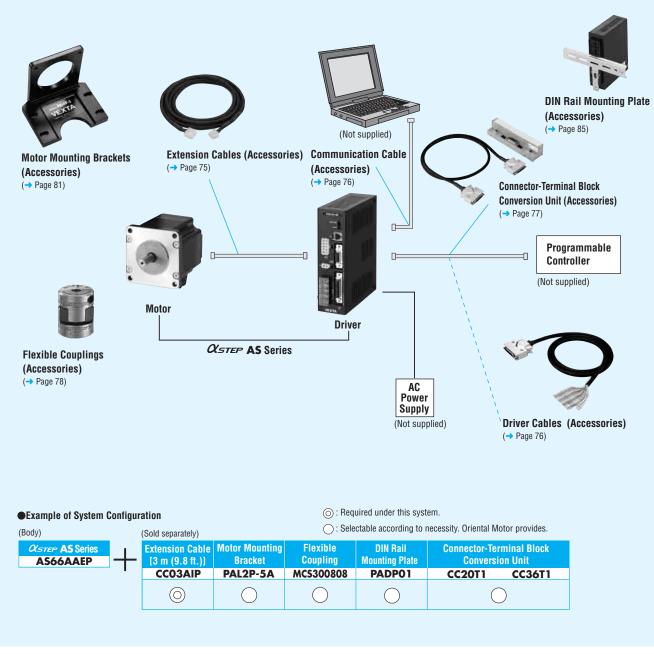
An example of a system configuration with the EMP400 Series controller.

The system configuration shown above is an example. Other combinations are available.

Extension Cables

Pulse Input Package

Extension cables are not included with *Qstep* products. When using the *Qstep* stepping motor and driver more than 0.4 m (1.31 ft.) apart from each other, use an extension cable (sold separately).


● Electromagnetic brake motor models [except motor frame size 42 mm (1.65 ft.)] must use an extension cable for electromagnetic brake motor (sold separately). For electromagnetic brake motor with motor frame size □42 mm (□1.65 in.), use an extension cable for standard motor.

→ Page 75

Motor Cable for IP65 Rated Motor

Always use the motor cable for IP65 rated motor (sold separately) for connection between the IP65 rated motor and the driver. -> Page 75

The system configuration shown above is an example. Other combinations are available.

Extension Cables

Built-In Controller Package

Extension cables are not included with *Qstep* products. When using the *Qstep* stepping motor and driver more than 0.4 m (1.31 ft.) apart from each other, use an extension cable (sold separately).

●Electromagnetic brake motor models [except motor frame size 42 mm (1.65 in.)] must use an extension cable for electromagnetic brake motor (sold separately). For electromagnetic brake motor with motor frame size □42 mm (□1.65 in.), use an extension cable for standard motor.
 → Page 75

Motor Cable for IP65 Rated Motor

Always use the motor cable for IP65 rated motor (sold separately) for connection between the IP65 rated motor and the driver. -> Page 75

Product Number Code

• Standard Type $\begin{array}{c} \textbf{AS} \\ 1 \end{array} \begin{array}{c} \textbf{6} \\ 2 \end{array} \begin{array}{c} \textbf{6} \\ 3 \end{array} \begin{array}{c} \textbf{A} \\ 4 \end{array} \begin{array}{c} \textbf{A} \\ 5 \end{array} \begin{array}{c} \textbf{E} \\ \textbf{6} \end{array} \begin{array}{c} \textbf{P} \\ 7 \end{array}$

Standard Type IP65 Rated Motor

AS	-	-		
1				

 ① Series AS: AS Series

 ② Motor Frame Size 4: 42 mm (1.65 in.) 6: 60 mm (2.36 in.) 9: 85 mm (3.35 in.)

 ③ Motor Case Length

 ④ Motor Type A: Standard (Single Shaft) M: Electromagnetic Brake Type

 ⑤ Power Supply Voltage A: Single-Phase 100-115 VAC C: Single-Phase 200-230 VAC

 ⑥ Motor Classification

 ⑦ Driver Type P: Built-In Controller Package Blank: Pulse Input Package

① Series AS: AS Series ② Motor Frame Size 6: 60 mm (2.36 in.) 9: 85 mm (3.35 in.) ③ Motor Case Length ④ Motor Shaft Type A: Single Shaft ⑤ Power Supply Voltage A: Single-Phase 100-115 VAC C: Single-Phase 200-230 VAC S: Three-Phase 200-230 VAC ⑥ Motor Classification ⑦ Driver Type P: Built-In Controller Package Blank: Pulse Input Package

1	Series AS: AS Series
2	Motor Frame Size 4 : 42 mm (1.65 in.) 6 : 60 mm (2.36 in.) 9 : 90 mm (3.54 in.)
3	Motor Case Length
4	Motor Type A: Standard (Single Shaft) M: Electromagnetic Brake Type
5	Power Supply Voltage A: Single-Phase 100-115 VAC C: Single-Phase 200-230 VAC S: Three-Phase 200-230 VAC
6	Motor Classification
1	Driver Type P: Built-In Controller Package Blank: Pulse Input Package
8	Gearhead Type T: TH Geared Type N: PN Geared Type H: Harmonic Geared Type
9	Gear Ratio
(10)	Reference Number

Product Line

The product names below are all for single shaft types, but there are also double shaft models available for all products except for those with electromagnetic brakes or IP65 rated motor. Contact the nearest Oriental Motor office for further information on the double shaft models.

Pulse Input Package

♦Standard Type

v otanuaru rype				
Power Supply Voltage	Model (Single	Shaft)		
	AS46AA			
	AS66AAE	NEW		
Single-Phase 100-115 VAC	AS69AAE	NEW		
-	AS98AAE	NEW		
	AS911AAE	NEW		
	AS66ACE	NEW		
Single-Phase 200-230 VAC	AS69ACE	NEW		
Single-Phase 200-230 VAG	AS98ACE	NEW		
	AS911ACE	NEW		
	AS66ASE	NEW		
Three-Phase 200-230 VAC	AS69ASE	NEW		
	AS98ASE	NEW		
	AS911ASE	NEW		

Standard Type with Electromagnetic Brake

	-		
Power Supply Voltage	Model (Single Shaft)		
	AS46MA		
Single-Phase 100-115 VAC	AS66MAE	NEW	
Single-Phase 100-115 VAC	AS69MAE	NEW	
	AS98MAE	NEW	
	AS66MCE	NEW	
Single-Phase 200-230 VAC	AS69MCE	NEW	
	AS98MCE	NEW	
Three-Phase 200-230 VAC	AS66MSE	NEW	
	AS69MSE	NEW	
	AS98MSE	NEW	

♦ Standard Type IP65 Rated Motor

Always use the motor cable for IP65 rated motor (sold separately) for connection between the IP65 rated motor and the driver.

Motor Cable for IP65 Rated Motor -> Page 75

		-	
Power Supply Voltage	Model (Single Shaft)		
	AS66AAT	NEW	
Single-Phase 100-115 VAC	AS69AAT	NEW	
	AS98AAT	NEW	
	AS911AAT	NEW	
	AS66ACT	NEW	
Oin als Disease 000,000 MAO	AS69ACT	NEW	
Single-Phase 200-230 VAC	AS98ACT	NEW	
	AS911ACT	NEW	
	AS66AST	NEW	
Three-Phase 200-230 VAC	AS69AST	NEW	
	AS98AST	NEW	
	AS911AST	NEW	

♦ TH Geared Type

Power Supply Voltage	Model (Single Sl	naft)
	AS46AA-T3.6	
Single-Phase 100-115 VAC	AS46AA-T7.2	
	AS46AA-T10	
	AS46AA-T20	
	AS46AA-T30	
	AS66AAE-T3.6	NEW
	AS66AAE-T7.2	NEW
	AS66AAE-T10	NEW
	AS66AAE-T20	NEW
	AS66AAE-T30	NEW
	AS98AAE-T3.6	NEW
	AS98AAE-T7.2	NEW
	AS98AAE-T10	NEW
	AS98AAE-T20	NEW
	AS98AAE-T30	NEW
	AS66ACE-T3.6	NEW
	AS66ACE-T7.2	NEW
	AS66ACE-T10	NEW
	AS66ACE-T20	NEW
Single-Phase 200-230 VAC	AS66ACE-T30	NEW
Sillyle-Filase 200-230 VAG	AS98ACE-T3.6	NEW
	AS98ACE-T7.2	NEW
	AS98ACE-T10	NEW
	AS98ACE-T20	NEW
	AS98ACE-T30	NEW
	AS66ASE-T3.6	NEW
	AS66ASE-T7.2	NEW
	AS66ASE-T10	NEW
	AS66ASE-T20	NEW
Three-Phase 200-230 VAC	AS66ASE-T30	NEW
Three-Phase 200-230 VAC	AS98ASE-T3.6	NEW
	AS98ASE-T7.2	NEW
	AS98ASE-T10	NEW
	AS98ASE-T20	NEW
	AS98ASE-T30	NEW

е

Power Supply Voltage	Model (Single Sh	iaft)
	AS46MA-T3.6	
	AS46MA-T7.2	
	AS46MA-T10	
	AS46MA-T20	
	AS46MA-T30	
	AS66MAE-T3.6	NEW
	AS66MAE-T7.2	NEW
Single-Phase 100-115 VAC	AS66MAE-T10	NEW
	AS66MAE-T20	NEW
	AS66MAE-T30	NEW
	AS98MAE-T3.6	NEW
	AS98MAE-T7.2	NEW
	AS98MAE-T10	NEW
	AS98MAE-T20	NEW
	AS98MAE-T30	NEW
	AS66MCE-T3.6	NEW
	AS66MCE-T7.2	NEW
	AS66MCE-T10	NEW
	AS66MCE-T20	NEW
Single-Phase 200-230 VAC	AS66MCE-T30	NEW
°	AS98MCE-T3.6	NEW
	AS98MCE-T7.2	NEW
	AS98MCE-T10	NEW
	AS98MCE-T20	NEW
	AS98MCE-T30	NEW
	AS66MSE-T3.6	NEW
	AS66MSE-T7.2	NEW
	AS66MSE-T10	NEW
	AS66MSE-T20	NEW
Three-Phase 200-230 VAC	AS66MSE-T30	NEW NEW
	AS98MSE-T3.6 AS98MSE-T7.2	NEW
		NEW
	AS98MSE-T10 AS98MSE-T20	NEW
	A370M3E-120	NEW

PN Geared Type		
Power Supply Voltage	Model (Single Sh	naft)
	AS46AA-N7.2	
	AS46AA-N10	
	AS66AAE-N5	NEW
	AS66AAE-N7.2	NEW
	AS66AAE-N10	NEW
	AS66AAE-N25	NEW
Cingle Dhoos 100 115 VAC	AS66AAE-N36	NEW
Single-Phase 100-115 VAC	AS66AAE-N50	NEW
	AS98AAE-N5	NEW
	AS98AAE-N7.2	NEW
	AS98AAE-N10	NEW
	AS98AAE-N25	NEW
	AS98AAE-N36	NEW
	AS98AAE-N50	NEW
	AS66ACE-N5	NEW
	AS66ACE-N7.2	NEW
	AS66ACE-N10	NEW
	AS66ACE-N25	NEW
	AS66ACE-N36	NEW
Single-Phase 200-230 VAC	AS66ACE-N50	NEW
Single-Phase 200-250 VAG	AS98ACE-N5	NEW
	AS98ACE-N7.2	NEW
	AS98ACE-N10	NEW
	AS98ACE-N25	NEW
	AS98ACE-N36	NEW
	AS98ACE-N50	NEW
	AS66ASE-N5	NEW
	AS66ASE-N7.2	NEW
	AS66ASE-N10	NEW
	AS66ASE-N25	NEW
	AS66ASE-N36	NEW
Three-Phase 200-230 VAC	AS66ASE-N50	NEW
THEE-PHASE 200-250 VAG	AS98ASE-N5	NEW
	AS98ASE-N7.2	NEW
	AS98ASE-N10	NEW
	AS98ASE-N25	NEW
	AS98ASE-N36	NEW
	AS98ASE-N50	NEW

◇PN Geared Type wi	th Electromagnet	tic Brake
Power Supply Voltage	Model (Single Sh	aft)
	AS46MA-N7.2	
	AS46MA-N10	
	AS66MAE-N5	NEW
	AS66MAE-N7.2	NEW
	AS66MAE-N10	NEW
	AS66MAE-N25	NEW
Cingle Phase 100 115 VAC	AS66MAE-N36	NEW
Single-Phase 100-115 VAC	AS66MAE-N50	NEW
	AS98MAE-N5	NEW
	AS98MAE-N7.2	NEW
	AS98MAE-N10	NEW
	AS98MAE-N25	NEW
	AS98MAE-N36	NEW
	AS98MAE-N50	NEW
	AS66MCE-N5	NEW
	AS66MCE-N7.2	NEW
	AS66MCE-N10	NEW
	AS66MCE-N25	NEW
	AS66MCE-N36	NEW
Single-Phase 200-230 VAC	AS66MCE-N50	NEW
Single Thase 200 200 VAO	AS98MCE-N5	NEW
	AS98MCE-N7.2	NEW
	AS98MCE-N10	NEW
	AS98MCE-N25	NEW
	AS98MCE-N36	NEW
	AS98MCE-N50	NEW
	AS66MSE-N5	NEW
	AS66MSE-N7.2	NEW
	AS66MSE-N10	NEW
	AS66MSE-N25	NEW
	AS66MSE-N36	NEW
Three-Phase 200-230 VAC	AS66MSE-N50	NEW
	AS98MSE-N5	NEW
	AS98MSE-N7.2	NEW
	AS98MSE-N10	NEW
	AS98MSE-N25	NEW
	AS98MSE-N36	NEW
	AS98MSE-N50	NEW

$\Diamond \textbf{Harmonic Geared Type}$

Power Supply Voltage	Model (Single Shaft)	
	AS46AA2-H50	
	AS46AA2-H100	
Cincle Dhoos 100 115 VAC	AS66AAE-H50	NEW
Single-Phase 100-115 VAC	AS66AAE-H100	NEW
	AS98AAE-H50	NEW
	AS98AAE-H100	NEW
	AS66ACE-H50	NEW
Cincle Dhoos 000 020 VAC	AS66ACE-H100	NEW
Single-Phase 200-230 VAC	AS98ACE-H50	NEW
	AS98ACE-H100	NEW
	AS66ASE-H50	NEW
Three-Phase 200-230 VAC	AS66ASE-H100	NEW
	AS98ASE-H50	NEW
	AS98ASE-H100	NEW

$\diamond {\sf Harmonic}$ Geared Type with Electromagnetic Brake

Power Supply Voltage	Model (Single Shaft)	
	AS46MA2-H50	
	AS46MA2-H100	
Single-Phase 100-115 VAC	AS66MAE-H50	NEW
Single-Thase Too-TTS VAG	AS66MAE-H100	NEW
	AS98MAE-H50	NEW
	AS98MAE-H100	NEW
	AS66MCE-H50	NEW
Single-Phase 200-230 VAC	AS66MCE-H100	NEW
Single-Phase 200-230 VAG	AS98MCE-H50	NEW
	AS98MCE-H100	NEW
	AS66MSE-H50	NEW
Three-Phase 200-230 VAC	AS66MSE-H100	NEW
	AS98MSE-H50	NEW
	AS98MSE-H100	NEW

Built-In Controller Package

♦Standard Type

Power Supply Voltage	Model (Single Shaft)	
	AS46AAP	
	AS66AAEP	NEW
Single-Phase 100-115 VAC	AS69AAEP	NEW
	AS98AAEP	NEW
	AS911AAEP	NEW
	AS66ACEP	NEW
	AS69ACEP	NEW
Single-Phase 200-230 VAC	AS98ACEP	NEW
	AS911ACEP	NEW
	AS66ASEP	NEW
Three-Phase 200-230 VAC	AS69ASEP	NEW
	AS98ASEP	NEW
	AS911ASEP	NEW

♦ Standard Type IP65 Rated Motor

Always use the motor cable for IP65 rated motor (sold separately) for connection between the IP65 rated motor and the driver.

Motor Cable for IP65 Rated Motor -> Page 75

Power Supply Voltage	Model (Single Shaft)	
	AS66AATP	NEW
Single-Phase 100-115 VAC	AS69AATP	NEW
Single-mase roo-rro vAc	AS98AATP	NEW
	AS911AATP	NEW
Single-Phase 200-230 VAC	AS66ACTP	NEW
	AS69ACTP	NEW
	AS98ACTP	NEW
	AS911ACTP	NEW
	AS66ASTP	NEW
Three-Phase 200-230 VAC	AS69ASTP	NEW
	AS98ASTP	NEW
	AS911ASTP	NEW

♦ TH Geared Type

VIII Gealeu Type	-	
Power Supply Voltage	Model (Single Sh	aft)
	AS46AAP-T3.6	
	AS46AAP-T7.2	
	AS46AAP-T10	
	AS46AAP-T20	
	AS46AAP-T30	
	AS66AAEP-T3.6	NEW
	AS66AAEP-T7.2	NEW
Single-Phase 100-115 VAC	AS66AAEP-T10	NEW
-	AS66AAEP-T20	NEW
	AS66AAEP-T30	NEW
	AS98AAEP-T3.6	NEW
	AS98AAEP-T7.2	NEW
	AS98AAEP-T10	NEW
	AS98AAEP-T20	NEW
	AS98AAEP-T30	NEW
	AS66ACEP-T3.6	NEW
	AS66ACEP-T7.2	NEW
	AS66ACEP-T10	NEW
	AS66ACEP-T20	NEW
0: I DI 000.000.140	AS66ACEP-T30	NEW
Single-Phase 200-230 VAC	AS98ACEP-T3.6	NEW
	AS98ACEP-T7.2	NEW
	AS98ACEP-T10	NEW
	AS98ACEP-T20	NEW
	AS98ACEP-T30	NEW
	AS66ASEP-T3.6	NEW
	AS66ASEP-T7.2	NEW
	AS66ASEP-T10	NEW
	AS66ASEP-T20	NEW
	AS66ASEP-T30	NEW
Three-Phase 200-230 VAC	AS98ASEP-T3.6	NEW
	AS98ASEP-T7.2	NEW
	AS98ASEP-T10	NEW
	AS98ASEP-T20	NEW
	AS98ASEP-T30	NEW
	ASTORSE - ISV	

Standard Type with Electromagnetic Brake

Power Supply Voltage	Model (Single Shaft)	
Single-Phase 100-115 VAC	AS46MAP	
	AS66MAEP	NEW
	AS69MAEP	NEW
	AS98MAEP	NEW
Single-Phase 200-230 VAC	AS66MCEP	NEW
	AS69MCEP	NEW
	AS98MCEP	NEW
	AS66MSEP	NEW
Three-Phase 200-230 VAC	AS69MSEP	NEW
	AS98MSEP	NEW

OTH Geared Type with Electromagnetic Brake

Power Supply Voltage	Model (Single Sha	aft)
	AS46MAP-T3.6	
	AS46MAP-T7.2	
	AS46MAP-T10	
	AS46MAP-T20	
	AS46MAP-T30	
	AS66MAEP-T3.6	NEW
	AS66MAEP-T7.2	NEW
Single-Phase 100-115 VAC	AS66MAEP-T10	NEW
	AS66MAEP-T20	NEW
	AS66MAEP-T30	NEW
	AS98MAEP-T3.6	NEW
	AS98MAEP-T7.2	NEW
	AS98MAEP-T10	NEW
	AS98MAEP-T20	NEW
	AS98MAEP-T30	NEW
	AS66MCEP-T3.6	NEW
	AS66MCEP-T7.2	NEW
	AS66MCEP-T10	NEW
	AS66MCEP-T20	NEW
Single-Phase 200-230 VAC	AS66MCEP-T30	NEW
	AS98MCEP-T3.6	NEW
	AS98MCEP-T7.2	NEW
	AS98MCEP-T10	NEW
	AS98MCEP-T20	NEW
	AS98MCEP-T30	NEW
	AS66MSEP-T3.6	NEW
	AS66MSEP-T7.2	NEW
	AS66MSEP-T10	NEW
	AS66MSEP-T20	NEW
Three-Phase 200-230 VAC	AS66MSEP-T30	NEW
	AS98MSEP-T3.6	NEW
	AS98MSEP-T7.2	NEW
	AS98MSEP-T10	NEW
	AS98MSEP-T20	NEW
	AS98MSEP-T30	NEW

>PN Geared Type		
Power Supply Voltage	Model (Single Sha	aft)
	AS46AAP-N7.2	
	AS46AAP-N10	
	AS66AAEP-N5	NEW
	AS66AAEP-N7.2	NEW
	AS66AAEP-N10	NEW
	AS66AAEP-N25	NEW
Cingle Dhees 100 115 VAC	AS66AAEP-N36	NEW
Single-Phase 100-115 VAC	AS66AAEP-N50	NEW
	AS98AAEP-N5	NEW
	AS98AAEP-N7.2	NEW
	AS98AAEP-N10	NEW
	AS98AAEP-N25	NEW
	AS98AAEP-N36	NEW
	AS98AAEP-N50	NEW
	AS66ACEP-N5	NEW
	AS66ACEP-N7.2	NEW
	AS66ACEP-N10	NEW
	AS66ACEP-N25	NEW
	AS66ACEP-N36	NEW
Cingle Dhees 000 000 VAC	AS66ACEP-N50	NEW
Single-Phase 200-230 VAC	AS98ACEP-N5	NEW
	AS98ACEP-N7.2	NEW
	AS98ACEP-N10	NEW
	AS98ACEP-N25	NEW
	AS98ACEP-N36	NEW
	AS98ACEP-N50	NEW
	AS66ASEP-N5	NEW
	AS66ASEP-N7.2	NEW
	AS66ASEP-N10	NEW
	AS66ASEP-N25	NEW
	AS66ASEP-N36	NEW
Three Dhees 200, 020 MAC	AS66ASEP-N50	NEW
Three-Phase 200-230 VAC	AS98ASEP-N5	NEW
	AS98ASEP-N7.2	NEW
	AS98ASEP-N10	NEW
	AS98ASEP-N25	NEW
	AS98ASEP-N36	NEW
	AS98ASEP-N50	NEW

◇PN Geared Type with Electromagnetic Brake		
Power Supply Voltage	Model (Single Sha	ıft)
	AS46MAP-N7.2	
	AS46MAP-N10	
	AS66MAEP-N5	NEW
	AS66MAEP-N7.2	NEW
	AS66MAEP-N10	NEW
	AS66MAEP-N25	NEW
Single-Phase 100-115 VAC	AS66MAEP-N36	NEW
Single-Fliase 100-115 VAC	AS66MAEP-N50	NEW
	AS98MAEP-N5	NEW
	AS98MAEP-N7.2	NEW
	AS98MAEP-N10	NEW
	AS98MAEP-N25	NEW
	AS98MAEP-N36	NEW
	AS98MAEP-N50	NEW
	AS66MCEP-N5	NEW
	AS66MCEP-N7.2	NEW
	AS66MCEP-N10	NEW
	AS66MCEP-N25	NEW
	AS66MCEP-N36	NEW
Single-Phase 200-230 VAC	AS66MCEP-N50	NEW
	AS98MCEP-N5	NEW
	AS98MCEP-N7.2	NEW
	AS98MCEP-N10	NEW
	AS98MCEP-N25	NEW
	AS98MCEP-N36	NEW
	AS98MCEP-N50	NEW
	AS66MSEP-N5	NEW
	AS66MSEP-N7.2	NEW
	AS66MSEP-N10	NEW
	AS66MSEP-N25	NEW
	AS66MSEP-N36	NEW
Three-Phase 200-230 VAC	AS66MSEP-N50	NEW
11166-1 Hase 200-230 VAG	AS98MSEP-N5	NEW
	AS98MSEP-N7.2	NEW
	AS98MSEP-N10	NEW
	AS98MSEP-N25	NEW
	AS98MSEP-N36	NEW
	AS98MSEP-N50	NEW

◇Harmonic Geared Type

Power Supply Voltage	Model (Single Sha	.ft)
	AS46AAP2-H50	
	AS46AAP2-H100	
Single-Phase 100-115 VAC	AS66AAEP-H50	NEW
Single-Fildse 100-115 VAG	AS66AAEP-H100	NEW
	AS98AAEP-H50	NEW
	AS98AAEP-H100	NEW
	AS66ACEP-H50	NEW
Single-Phase 200-230 VAC	AS66ACEP-H100	NEW
Single-Phase 200-230 VAG	AS98ACEP-H50	NEW
	AS98ACEP-H100	NEW
	AS66ASEP-H50	NEW
Three-Phase 200-230 VAC	AS66ASEP-H100	NEW
THEE-FHASE 200-230 VAG	AS98ASEP-H50	NEW
	AS98ASEP-H100	NEW

$\diamond {\sf Harmonic}$ Geared Type with Electromagnetic Brake

Power Supply Voltage	Model (Single Shaft)
	AS46MAP2-H50
	AS46MAP2-H100
Single-Phase 100-115 VAC	AS66MAEP-H50 NEW
Single-mase Too-TTS VAG	AS66MAEP-H100 🐠
	AS98MAEP-H50 NEW
	AS98MAEP-H100 🐠
	AS66MCEP-H50 NEW
Cinala Dhasa 000 020 MAC	AS66MCEP-H100 NEW
Single-Phase 200-230 VAC	AS98MCEP-H50 NEW
	AS98MCEP-H100 🐠
	AS66MSEP-H50 NEW
Three-Phase 200-230 VAC	AS66MSEP-H100 NEW
THEE-FILASE 200-230 VAG	AS98MSEP-H50 NEW
	AS98MSEP-H100 🐠

Standard Type Motor Frame Size 42 mm (1.65 in.), 60 mm (2.36 in.), 85 mm (3.35 in.)

Specifications (RoHS)

CAUIS CE With the AS46 type, only the driver conforms to the CSA standard.

	Pulse Input	Standard		AS46AA	AS66A E	AS69A E	AS98A E	AS911A E
Madal	Package	Electromagnetic I	Brake	AS46MA	AS66M_E	AS69M_E	AS98M E	-
Model	Built-In Controller	Standard		AS46AAP	AS66A EP	AS69A EP	AS98A EP	AS911A EP
	Package	Electromagnetic I	Brake	AS46MAP	AS66M EP	AS69M EP	AS98M EP	-
Maximum H	lolding Torque	N⋅m (o:	z-in)	0.3 (42)	1.2 (170)	2 (2	280)	4 (560)
Rotor Inertia	a	J: kg⋅m² (oz	-in²)	68×10 ⁻⁷ (0.37) [83×10 ⁻⁷ (0.45)]*1	405×10 ⁻⁷ (2.2) [564×10 ⁻⁷ (3.1)]*1	802×10 ⁻⁷ (4.4) [961×10 ⁻⁷ (5.3)]*1	1400×10 ⁻⁷ (7.7) [1560×10 ⁻⁷ (8.5)]*1	2710×10 ⁻⁷ (14.8)
Resolution*	² Resolutio	n Setting: 1000	P/R			0.36°/Pulse		
				Oinste Dhass 400 445 VAO	S	ingle-Phase 100-115 VAC	-15%~+10% 50/60 Hz	2
	Voltage-Frequency			Single-Phase 100-115 VAC -15%~+10% 50/60 Hz	S	ingle-Phase 200-230 VAC	-15%~+10% 50/60 Hz	2
Power				-13/0~+10/0 50/00 Hz	Т	hree-Phase 200-230 VAC	-15%~+10% 50/60 Hz	!
Source	Marian Inc.	Single-Phase 100-11	5 VAC	3.3	5	6.4	6	6.5
	Maximum Input Current A	Single-Phase 200-23	O VAC	-	3	3.9	3.5	4.5
	Guilent A	Three-Phase 200-23	O VAC	-	1.5	2.2	1.9	2.4
		Туре		Active when power is off				
Electromog	netic Brake*3	Power Supply I	nput	24 VDC±5%				-
Electronnayi	IELIC DI AKE	Power Consumpti	on W	2		6		-
		Excitation Curre	nt A	0.08		0.25		-
	Static Friction To	rque N⋅m (oz	z-in)	0.15 (21)	0.6 (85)	1 (1	42)	-
Mass		Motor kg	(lb.)	0.5 (1.1) [0.6 (1.3)]*1	0.85 (1.9) [1.1 (2.4)]*1	1.4 (3.1) [1.65 (3.6)]*1	1.8 (4.0) [2.2 (4.8)]*1	3 (6.6)
IVIASS		Driver kg	(lb.)			0.8 (1.8)		
	Motor			1		2	3	
Dimension No	Driver	Pulse Input				15		
	DIIVEI	Built-In Contro	ller			16		

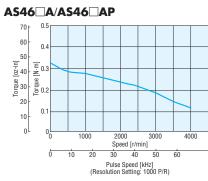
How to Read Specifications Table → Page 73

•Enter the power supply voltage A (Single-Phase 100-115 VAC), C (Single-Phase 200-230 VAC) or S (Three-Phase 200-230 VAC) in the box (

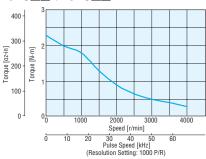
*1 The values inside the brackets [] represent the specification for the electromagnetic brake type.

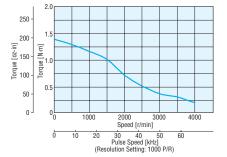
*2 Pulse Input Package: The resolution can be set to any one of 500 P/R, 1000 P/R, 5000 P/R, or 10000 P/R with the resolution select switch or resolution select switching signals.

AS66 E/AS66 EP

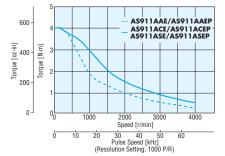

Resolution Select Switch -> Page 36

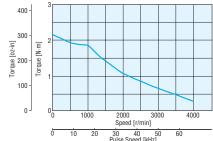
Built-In Controller Package: The resolution can be set from 500 P/R to 10000 P/R by setting parameters.


*3 The electromagnetic brakes are for holding the position when the power is off. They cannot be used for complicated braking. Also, a separate 24 VDC±5%, 0.3 A minimum (AS46: 0.1 A minimum) power supply is required for the electromagnetic brakes.


Speed – Torque Characteristics

How to Read Speed-Torque Characteristics -> Page 73





AS911A_E/AS911A_EP

20 30 40 50 Pulse Speed [kHz] (Resolution Setting: 1000 P/R)

Enter A (standard) or M (electromagnetic brake) in the box (
) within the model name.

•Enter the power supply voltage A (Single-Phase 100-115 VAC), C (Single-Phase 200-230 VAC) or S (Three-Phase 200-230 VAC) in the box (
) within the model name. Notes

Pay attention to heat dissipation from motor and driver. In particular, remember that the motor will produce a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor case under 100°C (212°F). [Under 75°C (167°F) is required to comply with UL or CSA standards.]

When using the motor with the dedicated driver, the driver's automatic current cutback at motor standstill function reduces maximum holding torque by approximately 50%.

AC Input AS Series

Functions System Configuration

Product Line

Controllers

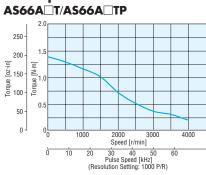
Standard Type IP65 Rated Motor Motor Frame Size 60 mm (2.36 in.), 85 mm (3.35 in.)

Specifications (RoHS)

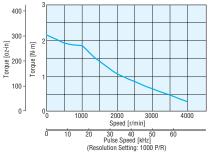
Model	Pulse Input Package	Standard	d	AS66A T	AS69A_T	AS98A_T	AS911A_T		
Model	Built-In Controller Package	Standard	d	AS66A_TP	AS69A□TP	AS98A TP	AS911A_TP		
Maximum H	olding Torque	N٠	m (oz-in)	1.2 (170)	2 (2	80)	4 (560)		
Rotor Inertia	1	J: kg∙m	² (oz-in ²)	405×10 ⁻⁷ (2.2)	802×10 ⁻⁷ (4.4)	1400×10 ⁻⁷ (7.7)	2710×10 ⁻⁷ (14.8)		
Resolution*1	1 Resolution	Setting: 1	1000 P/R		0.36°/	Pulse			
					Single-Phase 100-115 VAC	-15%~+10% 50/60 Hz			
	Voltage-Frequence	су		Single-Phase 200-230 VAC -15%~+10% 50/60 Hz					
Power					Three-Phase 200-230 VAC	-15%~+10% 50/60 Hz			
Source	Marian Inc.	Maximum land	Marian Inc.	Single-Phase	e 100-115 VAC	5	6.4	6	6.5
	Maximum Input Current A	Single-Phase	e 200-230 VAC	3	3.9	3.5	4.5		
	ountent A	Three-Phase	200-230 VAC	1.5	2.2	1.9	2.4		
Degree of Pr	rotection				Motor: IP65*2	Driver: IP10			
Mass		Motor	kg (lb.)	1 (2.2)	1.5 (3.3)	2.2 (4.8)	3.3 (7.3)		
111022		Driver	kg (lb.)		0.8 (1.8)			
	Motor			[4		5		
Dimension No.	Driver	Pulse Inp	out		1	5			
	DIIVEI	Built-In C	Controller		1	6			

How to Read Specifications Table -> Page 73

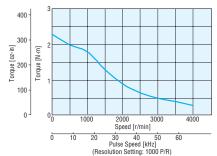
• Enter the power supply voltage A (Single-Phase 100-115 VAC), C (Single-Phase 200-230 VAC) or S (Three-Phase 200-230 VAC) in the box ([]) within the model name.

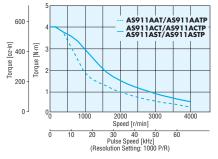

*1 Pulse Input Package: The resolution can be set to any one of 500 P/R, 1000 P/R, 5000 P/R, or 10000 P/R with the resolution select switch or resolution select switching signals.
Resolution Select Switch → Page 36

Built-In Controller Package: The resolution can be set from 500 P/R to 10000 P/R by setting parameters.


*2 Excluding the gap between the shaft and the flange.

Always use the motor cable for IP65 rated motor (sold separately) for connection between the IP65 rated motor and the driver. -> Page 75


Speed – Torque Characteristics How to Read Speed-Torque Characteristics -> Page 73


AS69A T/AS69A TP

AS98A T/AS98A TP

AS911A_T/AS911A_TP

•Enter the power supply voltage A (Single-Phase 100-115 VAC), C (Single-Phase 200-230 VAC) or S (Three-Phase 200-230 VAC) in the box (
) within the model name.
Notes:

Pay attention to heat dissipation from motor and driver. In particular, remember that the motor will produce a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor case under 100°C (212°F). [Under 75°C (167°F) is required to comply with UL or CSA standards.]

•When using the motor with the dedicated driver, the driver's automatic current cutback at motor standstill function reduces maximum holding torque by approximately 50%.

Requirement for Motor Cable for IP65 Rated Motor (Sold Separately)

Always use the motor cable for IP65 rated motor (sold separately) for connection between the IP65 rated motor and the driver. The IP65 rated motor cannot be driven unless the dedicated motor cable is used.

TH Geared Type Motor Frame Size 42 mm (1.65 in.)

Specifications (RoHS)

CFULLS CE With the AS46 type, only the driver conforms to the CSA standard.

	Pulse Input	Standard	AS46AA-T3.6	AS46AA-T7.2	AS46AA-T10	AS46AA-T20	AS46AA-T30	
Madal	Package	Electromagnetic Brake	AS46MA-T3.6	AS46MA-T7.2	A\$46MA-T10	AS46MA-T20	AS46MA-T30	
Model	Built-In Controller	r Standard	AS46AAP-T3.6	A\$46AAP-T7.2	AS46AAP-T10	AS46AAP-T20	AS46AAP-T30	
	Package	Electromagnetic Brake	AS46MAP-T3.6	AS46MAP-T7.2	AS46MAP-T10	AS46MAP-T20	AS46MAP-T30	
Maximum H	lolding Torque	N⋅m (Ib-in)	0.35 (3)	0.7 (6.1)	1 (8.8)	1.5 (13.2)	
Rotor Inertia	a	J: kg⋅m² (oz-in²)		68>	×10 ⁻⁷ (0.37) [83×10 ⁻⁷ (0.45	i)]*1		
Backlash	а	rc minute (degrees)	45 (0.75°)	25 (0.417°)	25 (0.417°)	15 (0.25°)	15 (0.25°)	
Permissible	Speed Range	r/min	0~500	0~250	0~180	0~90	0~60	
Gear Ratio			3.6:1	7.2:1	10:1	20:1	30:1	
Resolution*	² Resolutio	n Setting: 1000 P/R	0.1°/Pulse	0.05°/Pulse	0.036°/Pulse	0.018°/Pulse	0.012°/Pulse	
Permissible	Torque	N⋅m (Ib-in)	0.35 (3) 0.7 (6.1) 1 (8.8) 1.5 (13.2)					
Power	Voltage-Frequen	ю	Single-Phase 100-115 VAC -15%~+10% 50/60 Hz					
Source	Maximum Input Current A	A Single-Phase 100-115 VAC			3.3			
		Туре			Active when power is off			
lootromog	netic Brake*3	Power Supply Input			24 VDC±5%			
lectionagi	lielic Diake	Power Consumption W	2					
		Excitation Current A			0.08			
	Static Friction To	orque N·m (Ib-in)	0.17 (1.5)	0.35 (3)	0.5 (4.4)	0.75	(6.6)	
Mass		Motor kg (lb.)			0.65 (1.4) [0.75 (1.7)]*1			
VId55		Driver kg (lb.)			0.8 (1.8)			
	Motor				6			
Dimension No	Driver	Pulse Input			15			
	DINCI	Built-In Controller			16			

How to Read Specifications Table -> Page 73

*1 The values inside the brackets [] represent the specification for the electromagnetic brake type.

*2 Pulse Input Package: The resolution can be set to any one of 500 P/R, 1000 P/R, 5000 P/R, or 10000 P/R with the resolution select switch or resolution select switching signals.

Resolution Select Switch → Page 36

Speed – Torque Characteristics

Built-In Controller Package: The resolution can be set from 500 P/R to 10000 P/R by setting parameters.

*3 The electromagnetic brakes are for holding the position when the power is off. They cannot be used for complicated braking. Also, a separate 24 VDC±5%, 0.1 A minimum power supply is required for the electromagnetic brakes.

How to Read Speed-Torque Characteristics -> Page 73

Speed [r/min]

Pulse Speed [kHz] (Resolution Setting: 1000 P/R)

15 20 300

30 35

Note

Direction of rotation of the motor and that of the gear output shaft are the same for unit type with reduction ratio 3.6:1, 7.2:1 and 10:1. It is opposite for 20:1 and 30:1 ratio type.

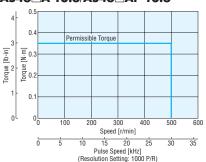
AS46 A-T7.2/AS46 AP-T7.2

Permissible Torque

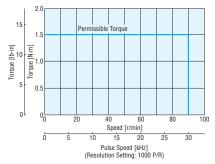
1.0

0.8

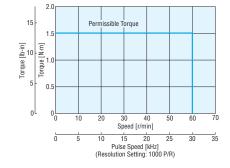
톤 0.6 Forque [Ib-in]

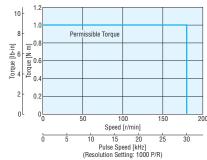

enbroj.4

0.2


ō

Λ


AS46 A-T3.6/AS46 AP-T3.6


AS46 A-T20/AS46 AP-T20

AS46 A-T30/AS46 AP-T30

AS46 A-T10/AS46 AP-T10

How to Read Specifications and Characteristics

Features

AC Input AS Series

Functions System Configuration

Product Line

cteristics Dimensions Connection and Operation

DC Input ASC Series

•Enter A (standard) or M (electromagnetic brake) in the box (
) within the model name. Notes

Pay attention to heat dissipation from motor and driver. In particular, remember that the motor will produce a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor case under 100°C (212°F). [Under 75°C (167°F) is required to comply with UL or CSA standards.]

When using the motor with the dedicated driver, the driver's automatic current cutback at motor standstill function reduces maximum holding torque by approximately 50%.

TH Geared Type Motor Frame Size 60 mm (2.36 in.)

Specifications (RoHS)

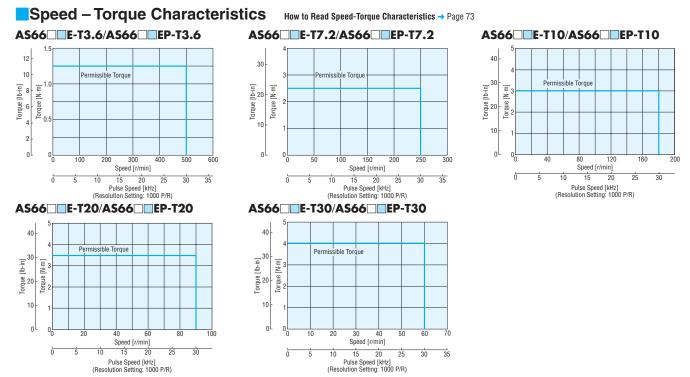
	Pulse Input	Standard	AS66A E-T3.6	AS66A E-T7.2	AS66A E-T10	AS66A E-T20	AS66A E-T30	
Model	Package	Electromagnetic Brake	AS66M E-T3.6	AS66M E-T7.2	AS66MDE-T10	AS66M E-T20	AS66MDE-T30	
wouer	Built-In Controller	Standard	AS66A EP-T3.6	AS66A EP-T7.2	AS66A EP-T10	AS66A EP-T20	AS66A EP-T30	
	Package	Electromagnetic Brake	AS66M EP-T3.6	AS66M EP-T7.2	AS66M EP-T10	AS66M EP-T20	AS66M EP-T30	
Maximum H	olding Torque	N⋅m (lb-in)	1.25 (11)	2.5 (22)	3 (26)	3.5 (30)	4 (35)	
Rotor Inertia	1	J: kg·m² (oz-in²)		405	×10 ⁻⁷ (2.2) [564×10 ⁻⁷ (3. ⁻	1)]*1		
Backlash	a	rc minute (degrees)	35 (0.584°)	15 (0).25°)	10 (0	.167°)	
Permissible	Speed Range	r/min	0~500	0~250	0~180	0~90	0~60	
Gear Ratio			3.6:1	7.2:1	10:1	20:1	30:1	
Resolution*	2 Resolution	n Setting: 1000 P/R	0.1°/Pulse	0.05°/Pulse	0.036°/Pulse	0.018°/Pulse	0.012°/Pulse	
Permissible	Torque	N⋅m (lb-in)	1.25 (11)	2.5 (22)	3 (26)	3.5 (30)	4 (35)	
				Single-Phase 1	00-115 VAC -15%~+1	0% 50/60 Hz		
	Voltage-Frequen	су	Single-Phase 200-230 VAC -15%~+10% 50/60 Hz					
Power			Three-Phase 200-230 VAC -15%~+10% 50/60 Hz					
Source	Maximum Input	Single-Phase 100-115 VAC	5					
	Current A	Single-Phase 200-230 VAC	3					
	Guileni A	Three-Phase 200-230 VAC	1.5					
		Туре	Active when power is off					
Electromagn	atio Broko*3	Power Supply Input	24 VDC±5%					
Electromayi	IELIC DI ANE	Power Consumption W			6			
		Excitation Current A			0.25			
	Static Friction To	rque N⋅m (lb-in)	0.62 (5.4)	1.25 (11)	1.5 (13.2)	1.75 (15.4)	2 (17.7)	
Mass		Motor kg (lb.)			1.25 (2.8) [1.5 (3.3)]*1			
IVId55	Driver kg (lb.)		0.8 (1.8)					
	Motor				7			
Dimension No.	Driver	Pulse Input			15			
	DIIVEI	Built-In Controller			16			

How to Read Specifications Table -> Page 73

•Enter the power supply voltage 🗛 (Single-Phase 100-115 VAC), C (Single-Phase 200-230 VAC) or S (Three-Phase 200-230 VAC) in the box (🗆) within the model name.

*1 The values inside the brackets [] represent the specification for the electromagnetic brake type.

*2 Pulse Input Package: The resolution can be set to any one of 500 P/R, 1000 P/R, 5000 P/R, or 10000 P/R with the resolution select switch or resolution select switching signals.


Resolution Select Switch -> Page 36

Built-In Controller Package: The resolution can be set from 500 P/R to 10000 P/R by setting parameters.

*3 The electromagnetic brakes are for holding the position when the power is off. They cannot be used for complicated braking. Also, a separate 24 VDC±5%, 0.3 A minimum power supply is required for the electromagnetic brakes.

Note:

•Direction of rotation of the motor and that of the gear output shaft are the same for unit type with reduction ratio 3.6:1, 7.2:1 and 10:1. It is opposite for 20:1 and 30:1 ratio type.

•Enter **A** (standard) or **M** (electromagnetic brake) in the box (\Box) within the model name.

• Enter the power supply voltage A (Single-Phase 100-115 VAC), C (Single-Phase 200-230 VAC) or S (Three-Phase 200-230 VAC) in the box (
) within the model name.

Pay attention to heat dissipation from motor and driver. In particular, remember that the motor will produce a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor case under 100°C (212°F). [Under 75°C (167°F) is required to comply with UL or CSA standards.]

When using the motor with the dedicated driver, the driver's automatic current cutback at motor standstill function reduces maximum holding torque by approximately 50%.

Notes:

TH Geared Type Motor Frame Size 90 mm (3.54 in.)

Specifications (RoHS)

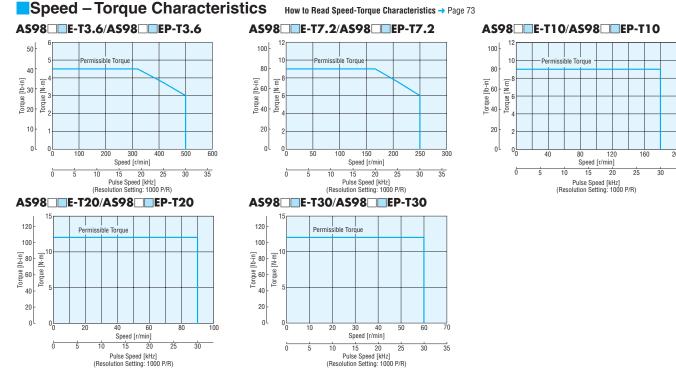
	Pulse Input	Standard	AS98A E-T3.6	AS98A E-T7.2	AS98A E-T10	AS98A E-T20	AS98A E-T30	
Model	Package	Electromagnetic Brake	AS98M_E-T3.6	AS98M_E-T7.2	AS98MDE-T10	AS98M E-T20	AS98M_E-T30	
would	Built-In Controller	Standard	AS98A EP-T3.6	AS98A EP-T7.2	AS98A EP-T10	AS98A EP-T20	AS98A EP-T30	
	Package	Electromagnetic Brake	AS98M EP-T3.6	AS98M EP-T7.2	AS98M EP-T10	AS98M EP-T20	AS98M EP-T30	
Maximum H	lolding Torque	N⋅m (Ib-in)	4.5 (39)	9 (79)	12 (106)	
Rotor Inertia	a	J: kg⋅m² (oz-in²)	1400×10 ⁻⁷ (7.7) [1560×10 ⁻⁷ (8.5)]*1					
Backlash	ai	rc minute (degrees)	25 (0.417°)	15 (0).25°)	10 (0	.167°)	
Permissible	Speed Range	r/min	0~500	0~250	0~180	0~90	0~60	
Gear Ratio			3.6:1	7.2:1	10:1	20:1	30:1	
Resolution*	2 Resolution	n Setting: 1000 P/R	0.1°/Pulse	0.05°/Pulse	0.036°/Pulse	0.018°/Pulse	0.012°/Pulse	
Permissible	Torque	N∙m (lb-in)	4.5 (39)	9 (79)	12 (106)	
				Single-Phase 100-115 VAC -15%~+10% 50/60 Hz				
	Voltage-Frequence	су	Single-Phase 200-230 VAC					
Power			Three-Phase 200-230 VAC -15%~+10% 50/60 Hz					
Source	Maximum Input	Single-Phase 100-115 VAC	6					
	Current A	Single-Phase 200-230 VAC	3.5					
	ounoint A	Three-Phase 200-230 VAC	1.9					
		Туре			Active when power is off			
Flectromag	netic Brake ^{*3}	Power Supply Input			24 VDC±5%			
Licculonagi	ICTIC DTAKE	Power Consumption W			6			
		Excitation Current A			0.25			
	Static Friction To	rque N∙m (Ib-in)	2.25 (19.9)	4.5	(39)	6 (53)	
Mass Motor kg (lb.)			3 (6.6) [3.4 (7.5)]*1					
Driver kg (lb.)			0.8 (1.8)					
	Motor				8			
Dimension No.	l Irivor	Pulse Input			15			
	DIIVGI	Built-In Controller			16			

How to Read Specifications Table -> Page 73

●Enter the power supply voltage 🗛 (Single-Phase 100-115 VAC), C (Single-Phase 200-230 VAC) or S (Three-Phase 200-230 VAC) in the box (□) within the model name.

*1 The values inside the brackets [] represent the specification for the electromagnetic brake type.

*2 Pulse Input Package: The resolution can be set to any one of 500 P/R, 1000 P/R, 5000 P/R, or 10000 P/R with the resolution select switch or resolution select switching signals.


Resolution Select Switch → Page 36

Built-In Controller Package: The resolution can be set from 500 P/R to 10000 P/R by setting parameters.

*3 The electromagnetic brakes are for holding the position when the power is off. They cannot be used for complicated braking. Also, a separate 24 VDC±5%, 0.3 A minimum power supply is required for the electromagnetic brakes.

Note:

•Direction of rotation of the motor and that of the gear output shaft are the same for unit type with reduction ratio 3.6:1, 7.2:1 and 10:1. It is opposite for 20:1 and 30:1 ratio type.

●Enter A (standard) or M (electromagnetic brake) in the box (□) within the model name.

•Enter the power supply voltage A (Single-Phase 100-115 VAC), C (Single-Phase 200-230 VAC) or S (Three-Phase 200-230 VAC) in the box () within the model name.

Pay attention to heat dissipation from motor and driver. In particular, remember that the motor will produce a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor case under 100°C (212°F). [Under 75°C (167°F) is required to comply with UL or CSA standards.]

When using the motor with the dedicated driver, the driver's automatic current cutback at motor standstill function reduces maximum holding torque by approximately 50%.

Functions System Configuration

How to Read Specifications and Characteristics

PN Geared Type Motor Frame Size 42 mm (1.65 in.)

Specifications (RoHS)

cRJus CE With the AS46 type, only the driver conforms to the CSA standard.

	Pulse Input	Standard	AS46AA-N7.2	A\$46AA-N10		
Model	Package	Electromagnetic Brake	A\$46MA-N7.2	AS46MA-N10		
wouer	Built-In Controller	Standard	AS46AAP-N7.2	AS46AAP-N10		
	Package	Electromagnetic Brake	AS46MAP-N7.2	AS46MAP-N10		
Maximum Ho	olding Torque	N⋅m (lb-in)	1.5 (13.2)		
Rotor Inertia		J: kg⋅m² (oz-in²)	68×10 ⁻⁷ (0.37) [8	33×10 ⁻⁷ (0.45)]*1		
Backlash	а	rc minute (degrees)	2 (0.	034°)		
Angle Error	a	rc minute (degrees)	6 (0).1°)		
Permissible	Speed Range	r/min	0~416	0~300		
Gear Ratio			7.2:1	10:1		
Resolution*2	Resolution	Setting: 1000 P/R	0.05°/Pulse	0.036°/Pulse		
Permissible	Torque	N⋅m (lb-in)	1.5 (13.2)			
Maximum To	orque*3	N⋅m (lb-in)	2 (17.7)			
Power	Voltage-Frequenc	У	Single-Phase 100-115 VAC $-15\%{\sim}+10\%$ 50/60 Hz			
Source	Maximum Input Current A	Single-Phase 100-115 VAC	3	3.3		
		Туре	Active when	power is off		
Electromagn	otic Brako*4	Power Supply Input	24 VD	C±5%		
LIEGUUIIagii	elic Diake	Power Consumption W	2	2		
		Excitation Current A	0.	08		
	Static Friction Tor	rque N·m (lb-in)	0.75	(6.6)		
Mass	Mass Motor kg		0.71 (1.6) [().81 (1.8)] ^{*1}		
111033		Driver kg (lb.)	0.8	(1.8)		
	Motor			9		
Dimension No.	Driver	Pulse Input		5		
	DING	Built-In Controller	16			

How to Read Specifications Table → Page 73

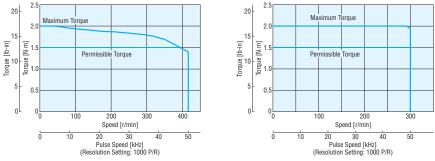
*1 The values inside the brackets [] represent the specification for the electromagnetic brake type.

*2 Pulse Input Package: The resolution can be set to any one of 500 P/R, 1000 P/R, 5000 P/R, or 10000 P/R with the resolution select switch or resolution select switching signals. Resolution Select Switch → Page 36

Built-In Controller Package: The resolution can be set from 500 P/R to 10000 P/R by setting parameters.

*3 The value of Maximum Torque is for gear. For output torque for geared motor, refer to the Speed - Torque Characteristics.

*4 The electromagnetic brakes are for holding the position when the power is off. They cannot be used for complicated braking. Also, a separate 24 VDC±5%, 0.1 A minimum power supply is required for the electromagnetic brakes.


Note:

Direction of rotation of the motor shaft and that of the gear output shaft are the same.

Speed – Torque Characteristics How to Read Speed-Torque Characteristics → Page 73

AS46 A-N7.2/AS46 AP-N7.2

AS46 A-N10/AS46 AP-N10

●Enter A (standard) or M (electromagnetic brake) in the box (□) within the model name.

Notes:

Pay attention to heat dissipation from motor and driver. In particular, remember that the motor will produce a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor case under 100°C (212°F). [Under 75°C (167°F) is required to comply with UL or CSA standards.]

When using the motor with the dedicated driver, the driver's automatic current cutback at motor standstill function reduces maximum holding torque by approximately 50%.

PN Geared Type Motor Frame Size 60 mm (2.36 in.)

Specifications (RoHS)

								•===••
	Pulse Input	Standard	AS66A E-N5	AS66A E-N7.2	AS66A E-N10	AS66A E-N25	AS66A E-N36	AS66A E-N50
Model	Package	Electromagnetic Brake	AS66M E-N5	AS66M E-N7.2	AS66MDE-N10	AS66MDE-N25	AS66M E-N36	AS66M E-N50
Woder	Built-In Controller	Standard	AS66A EP-N5	AS66A EP-N7.2	AS66A EP-N10	AS66A EP-N25	AS66A EP-N36	AS66A EP-N50
	Package	Electromagnetic Brake	AS66M EP-N5	AS66M EP-N7.2	AS66M EP-N10	AS66M EP-N25	AS66M EP-N36	AS66M EP-N50
Maximum Ho	olding Torque	N⋅m (lb-in)	3.5 (30)	4 (35)	5 (44)		8 (70)	
Rotor Inertia		J: kg⋅m² (oz-in²)			405×10 ⁻⁷ (2.2) [564×10 ⁻⁷ (3.1)]*1		
Backlash	ar	rc minute (degrees)		2 (0.034°)			3 (0.05°)	
Angle Error	ar	rc minute (degrees)			5 (0.	084°)		
	Speed Range	r/min	0~600	0~416	0~300	0~120	0~83	0~60
Gear Ratio			5:1	7.2:1	10:1	25:1	36:1	50:1
Resolution*2	Resolution	n Setting: 1000 P/R	0.072°/Pulse	0.05°/Pulse	0.036°/Pulse	0.0144°/Pulse	0.01°/Pulse	0.0072°/Pulse
Permissible 7	Torque	N⋅m (lb-in)	3.5 (30)	4 (35)	5 (44)		8 (70)	
Maximum To	orque ^{*3}	N⋅m (lb-in)	7 (61)	9 (79)	11 (97)	16 (141)		177)
					-Phase 100-115 VAC		/60 Hz	
	Voltage-Frequence	су			-Phase 200-230 VAC		/60 Hz	
Power				Three	-Phase 200-230 VAC	-15%~+10% 50/	/60 Hz	
Source	Maximum Input	Single-Phase 100-115 VAC				5		
	Current A	Single-Phase 200-230 VAC				3		
	ounonen	Three-Phase 200-230 VAC			1	·		
		Туре				power is off		
Electromagne	etic Brake*4	Power Supply Input			24 VD			
Libbli offidgin		Power Consumption W				3		
		Excitation Current A			0.	25		
	Static Friction To	1	1.75 (15.4)	2 (17.7)	2.5 (22)		4 (35)	
Mass		Motor kg (lb.)		1.5 (3.3) [1.75 (3.9)]*			1.7 (3.7) [1.95 (4.3)]*	
		Driver kg (lb.)			0.8	· /		
	Motor					0		
Dimension No.	Driver	Pulse Input				5		
	Built-In Controller				1	6		

How to Read Specifications Table → Page 73

•Enter the power supply voltage A (Single-Phase 100-115 VAC), C (Single-Phase 200-230 VAC) or S (Three-Phase 200-230 VAC) in the box (
) within the model name.

*1 The values inside the brackets [] represent the specification for the electromagnetic brake type.

*2 Pulse Input Package: The resolution can be set to any one of 500 P/R, 1000 P/R, 5000 P/R, or 10000 P/R with the resolution select switch or resolution select switching signals. Resolution Select Switch → Page 36

Built-In Controller Package: The resolution can be set from 500 P/R to 10000 P/R by setting parameters.

*3 The value of Maximum Torque is for gear. For output torque for geared motor, refer to the Speed - Torque Characteristics.

*4 The electromagnetic brakes are for holding the position when the power is off. They cannot be used for complicated braking. Also, a separate 24 VDC±5%, 0.3 A minimum power supply is required for the electromagnetic brakes.

Note

Direction of rotation of the motor shaft and that of the gear output shaft are the same.

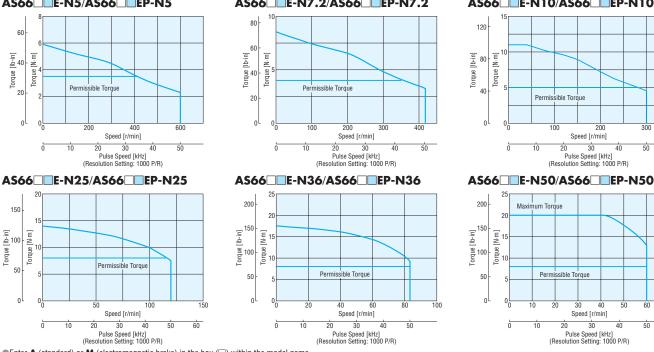
Speed – Torque Characteristics How to Read Speed-Torque Characteristics → Page 73

AS66 E-N5/AS66 EP-N5

AS66 E-N10/AS66 EP-N10

200

40


30

30

40

300

50

•Enter A (standard) or M (electromagnetic brake) in the box (
) within the model name.

•Enter the power supply voltage A (Single-Phase 100-115 VAC), C (Single-Phase 200-230 VAC) or S (Three-Phase 200-230 VAC) in the box (

Pay attention to heat dissipation from motor and driver. In particular, remember that the motor will produce a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor case under 100°C (212°F). [Under 75°C (167°F) is required to comply with UL or CSA standards.]

When using the motor with th1e dedicated driver, the driver's automatic current cutback at motor standstill function reduces maximum holding torque by approximately 50%.

Controllers

Functions System Configuration

Product Line

PN Geared Type Motor Frame Size 90 mm (3.54 in.)

Specifications (RoHS)

AS98A E-N7.2 AS98A E-N10 AS98A E-N25 AS98A E-N36 AS98A E-N50 Pulse Input AS98A E-N5 Standard Package AS98MDE-N5 AS98M_E-N7.2 AS98M_E-N10 AS98M_E-N25 AS98M_E-N36 AS98MDE-N50 Electromagnetic Brake Model **Built-In Controller** Standard AS98A EP-N5 AS98A EP-N7.2 AS98A EP-N10 AS98AEP-N25 AS98AEP-N36 AS98AEP-N50 Electromagnetic Brake AS98M EP-N5 AS98M EP-N7.2 AS98M EP-N10 AS98M EP-N25 AS98M EP-N36 AS98M EP-N50 Package Maximum Holding Torque N·m (lb-in) 10 (88) 14 (123) 20 (177) 37 (320) 1400×10⁻⁷ (7.7) [1560×10⁻⁷ (8.5)] Rotor Inertia J: kg·m² (oz-in²) Backlash 2 (0.034°) 3 (0.05°) arc minute (degrees) Angle Error arc minute (degrees) 4 (0.067°) 0~416 Permissible Speed Range 0~600 0~300 0~120 0~83 $0 \sim 60$ r/min Gear Ratio 5:1 7.2:1 10:1 25:1 36:1 50:1 0.05°/Pulse Resolution Resolution Setting: 1000 P/R 0.072°/Pulse 0.036°/Pulse 0.0144°/Pulse 0.01°/Pulse 0.0072°/Pulse Permissible Torque N·m (lb-in) 10 (88) 14 (123) 20 (177) 37 (320) Maximum Torque* N⋅m (lb-in) 28 (240) 35 (300) 56 (490) 60 (530) Single-Phase 100-115 VAC -15%~+10% 50/60 Hz Voltage-Frequency Single-Phase 200-230 VAC -15%~+10% 50/60 Hz Three-Phase 200-230 VAC $-15\% \sim +10\%$ 50/60 Hz Power Source Single-Phase 100-115 VAC 6 Maximum Input Single-Phase 200-230 VAC 3.5 Current A Three-Phase 200-230 VAC 1.9 Active when power is off Туре Power Supply Input $24~\text{VDC}{\pm}5\%$ Electromagnetic Brake*4 Power Consumption W 6 Excitation Current A 0 25 Static Friction Torque 4.5 (39) 6.45 (57) 9 (79) 18.5 (163) N⋅m (lb-in) Motor 4 (8.8) [4.4 (9.7)]* 4.7 (10) [5.1 (11)]* kg (lb.) Mass Driver kg (lb.) 0.8 (1.8) Motor Dimension No. Pulse Input 15 Driver

How to Read Specifications Table → Page 73

•Enter the power supply voltage A (Single-Phase 100-115 VAC), C (Single-Phase 200-230 VAC) or S (Three-Phase 200-230 VAC) in the box (

*1 The values inside the brackets [] represent the specification for the electromagnetic brake type.

Built-In Controller

*2 Pulse Input Package: The resolution can be set to any one of 500 P/R, 1000 P/R, 5000 P/R, or 10000 P/R with the resolution select switch or resolution select switching signals.

Resolution Select Switch -> Page 36

Built-In Controller Package: The resolution can be set from 500 P/R to 10000 P/R by setting parameters.

*3 The value of Maximum Torque is for gear. For output torque for geared motor, refer to the Speed - Torque Characteristics.

150

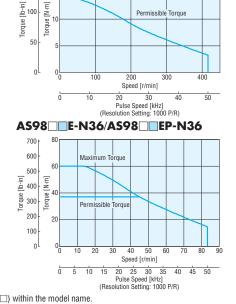
*4 The electromagnetic brakes are for holding the position when the power is off. They cannot be used for complicated braking. Also, a separate 24 VDC±5%, 0.3 A minimum power supply is required for the electromagnetic brakes.

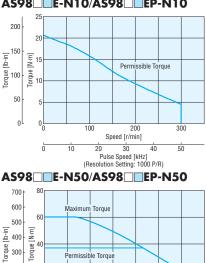
Note

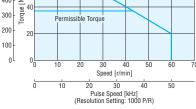
Direction of rotation of the motor shaft and that of the gear output shaft are the same.

Speed – Torque Characteristics How to Read Speed-Torque Characteristics -> Page 73


Permissible Torque


16


AS98 E-N5/AS98 EP-N5


AS98 E-N7.2/AS98 EP-N7.2

AS98 E-N10/AS98 EP-N10

●Enter A (standard) or M (electromagnetic brake) in the box (□) within the model name.

•Enter the power supply voltage A (Single-Phase 100-115 VAC), C (Single-Phase 200-230 VAC) or S (Three-Phase 200-230 VAC) in the box (
) within the model name.

Pay attention to heat dissipation from motor and driver. In particular, remember that the motor will produce a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor case under 100°C (212°F). [Under 75°C (167°F) is required to comply with UL or CSA standards.]

When using the motor with the dedicated driver, the driver's automatic current cutback at motor standstill function reduces maximum holding torque by approximately 50%.

Harmonic Geared Type Motor Frame Size 42 mm (1.65 in.), 60 mm (2.36 in.), 90 mm (3.54 in.)

Specifications (RoHS)

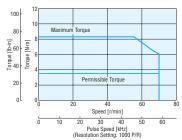
cRU_{US} CC With the AS46 type, only the driver conforms to the CSA standard.

						JI., J.		
	Pulse Input	Standard	AS46AA2-H50	AS46AA2-H100	AS66A E-H50	AS66A E-H100	AS98A E-H50	AS98A E-H100
Model	Package	Electromagnetic Brake	AS46MA2-H50	AS46MA2-H100	AS66M E-H50	AS66M E-H100	AS98M E-H50	AS98M E-H100
wouer	Built-In Controller	Standard	AS46AAP2-H50	AS46AAP2-H100	AS66A EP-H50	AS66A EP-H100	AS98A EP-H50	AS98A EP-H100
	Package	Electromagnetic Brake	AS46MAP2-H50	AS46MAP2-H100	AS66M EP-H50	AS66M EP-H100	AS98M EP-H50	AS98M EP-H100
Maximum Ho	olding Torque	N⋅m (lb-in)	3.5 (30)	5 (44)	5.5 (48)	8 (70)	25 (220)	37 (320)
Rotor Inertia		J: kg⋅m² (oz-in²)	85×10 ⁻⁷ (0.46) [1	00×10 ⁻⁷ (0.55)]*1	440×10 ⁻⁷ (2.4) [599×10 ⁻⁷ (3.3)]*1	1600×10 ⁻⁷ (8.8) [1759×10 ⁻⁷ (9.6)]*1
Permissible S	Speed Range	r/min	0~70	0~35	0~70	0~35	0~70	0~35
Gear Ratio			50:1	100:1	50:1	100:1	50:1	100:1
Resolution*2	Resolution	n Setting: 1000 P/R	0.0072°/Pulse	0.0036°/Pulse	0.0072°/Pulse	0.0036°/Pulse	0.0072°/Pulse	0.0036°/Pulse
Permissible 1	Forque	N⋅m (lb-in)	3.5 (30)	5 (44)	5.5 (48)	8 (70)	25 (220)	37 (320)
Maximum To	rque	N⋅m (lb-in)	8.3 (73)	11 (97)	18 (159)	28 (240)	35 (300)	55 (480)
Lost Motion (Load Torque	.)	arc minute	1.5 max. (±0.16 N⋅m)	1.5 max. (±0.2 N⋅m)	0.7 max. (±0.28 N⋅m)	0.7 max. (±0.39 N⋅m)		max. ? N⋅m)
(Loud Torque	·/		(_0.10 1411)	(=0.2 10111)	· · · · ·	e-Phase 100-115 VAC	· · · ·	/60 Hz
	Voltage-Fregue	001	Single-Phase	100-115 VAC	, , , , , , , , , , , , , , , , , , ,	e-Phase 200-230 VAC		/60 Hz
Power	vollage-rieque	ncy	-15%~+10	1% 50/60 Hz	<u>v</u>	-Phase 200-230 VAC		/60 Hz
Source		Single-Phase 100-115 VAC	2	.3		5		6 6
oource	Maximum Input	Single-Phase 200-230 VAC		-		3		.5
	Current A	Three-Phase 200-230 VAC		_		.5		.9
-		Type				power is off	I	.5
		Power Supply Input				C±5%		
Electromagne	etic Brake ^{*3}	Power Consumption W		2	24.60	<u>6_070</u>	3	
		Excitation Current A		08		0.1		
	Static Friction T	orque N·m (Ib-in)	1.75 (15.4)	2.5 (22)	2.75 (24)	4 (35)	12.5 (110)	18.5 (163)
		Motor kg (lb.)	. ,	0.8 (1.8)]*1	1.4 (3.1) [1	.65 (3.6)]*1	. ,	4.3 (9.5)]*1
Mass		Driver kg (lb.)			0.8			
	Motor		1	2	1	3	1	4
Dimension No.		Pulse Input				5		
	Driver	Built-In Controller			1	6		

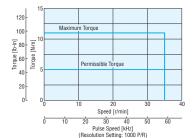
How to Read Specifications Table → Page 73

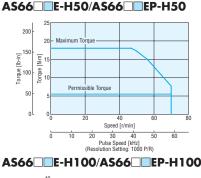
• Enter the power supply voltage A (Single-Phase 100-115 VAC), C (Single-Phase 200-230 VAC) or S (Three-Phase 200-230 VAC) in the box (
) within the model name.

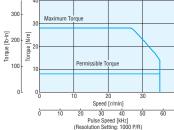
*2 Pulse Input Package: The resolution can be set to any one of 500 P/R, 1000 P/R, 5000 P/R, or 10000 P/R with the resolution select switch or resolution select switching signals. Resolution Select Switch -> Page 36

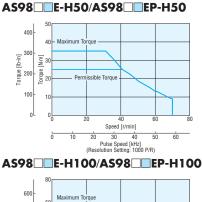

Built-In Controller Package: The resolution can be set from 500 P/R to 10000 P/R by setting parameters.

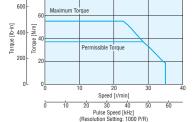
*3 The electromagnetic brakes are for holding the position when the power is off. They cannot be used for complicated braking. Also, a separate 24 VDC±5%, 0.3 A minimum (AS46: 0.1 A minimum) power supply is required for the electromagnetic brakes.


The inertia represents a sum of the inertia of the harmonic gear converted to a motor shaft value, and the rotor inertia. Direction of rotation of the motor shaft and that of the gear output shaft are the opposite.


Speed – Torque Characteristics How to Read Speed-Torque Characteristics -> Page 73


AS46 A2-H50/AS46 AP2-H50




AS46 A2-H100/AS46 AP2-H100

 $\bullet \mathsf{Enter}\, \mathbf{A}$ (standard) or \mathbf{M} (electromagnetic brake) in the box () within the model name.

•Enter the power supply voltage A (Single-Phase 100-115 VAC), C (Single-Phase 200-230 VAC) or S (Three-Phase 200-230 VAC) in the box () within the model name.

•Pay attention to heat dissipation from motor and driver. In particular, remember that the motor will produce a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor case under 100°C (212°F). [Under 75°C (167°F) is required to comply with UL or CSA standards.]

In order to prevent fatigue of the gear grease in the harmonic gear, keep the temperature of the gear case under 70°C (158°F).

When using the motor with the dedicated driver, the driver's automatic current cutback at motor standstill function reduces maximum holding torque by approximately 50%.

Functions System Configuration

Product Line

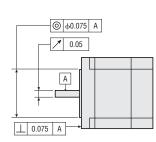
^{*1} The values inside the brackets [] represent the specification for the electromagnetic brake type.

Driver Specifications

	Pulse Input Package	Built-In Controller Package
Speed and Positioning Control Command	Pulse input	Stored program
Maximum Input Pulse Frequency	250 kHz (When the pulse duty is 50%)	-
	When the protective functions are activated, an alar	n signal is output and the motor stops automatically. Stack overflow, Memory read error, Program reference error, Compilation error, Operation result overflow, Parameter out-of-range error, Divide by
Protective Functions	Overheat, Overload, Overvoltage, Speeed error, Overcurrent, Overspeed, EEPROM data error, Sensor error, System error	zero, General I/O definition error, PC command execution error, Overheat protection, Overload protection, Overspeed error, Overvoltage protection, Excessive position deviation, Overcurrent protection, Emergency stop, Incorrect limit-sensor logic, Reverse limit-sensor connection, Mechanical home seeking error, Overtravel, Software overtravel, Emergency stop, Invalid operation data, Resolver sensor error, Initial rotor revolution error, NVRAM error, System error
Input Signals	Photocoupler input, Input resistance: $220 \ \Omega$, Input current: 7-20 mA Pulse (CW pulse) signal [Negative logic pulse input], Rotation direction (CCW pulse) signal [Negative logic pulse input], All windings off, Alarm clear, Resolution setting	Photocoupler input, Control input: 24 VDC, Input resistance 4.7 k Ω (X0-X7, START, E-STOP, HOMELS, +LS, –LS, SENSOR)
Output Signals	Photocoupler output, Open-collector output External use condition: 30 VDC maximum, 15 mA maximum (Positioning completion signal, Alarm signal) Transistor, Open-collector output External use condition: 30 VDC maximum, 15 mA maximum (Timing signal, Feedback pulse ASG · BSG signal) Line driver output: Equivalent of 26C31 (Timing signal, Feedback pulse ASG · BSG signal)	Photocoupler, Open-collector output External use condition: 30 VDC maximum, 4~8 mA (Y0~Y7, ALM) Line driver output: Equivalent of 26C31 (ASG • BSG Signal)
User Program	-	Maximum number of programs: 14 programs (Including STARTUP program) Maximum lines per program: 64 lines Maximum commands per 1 line: 1 command (Single state) Maximum program variables: 26 variables (A~Z)
Positioning Control	_	Incremental (relative distance specification) mode/Absolute (absolute position specification) mode One-shot operation/Linked operation (A maximum of 4 profiles can be linked) Maximum operating ranges Steps: -8 388 608~+8 388 607 (1 each) Operating speed: 10 Hz~500 000 Hz (500 kHz) Acceleration/Deceleration rate*: 10~50000 msec
Operating Method	_	Positioning operation (Indexing) Continuous operation (Scan) Linked profile Return to electrical home position (Return) Return to mechanicaol home position (Home operation)
Mechanical Home Detection Operation		Home seeking operation is performed from the entire range using mechanical position detection signals (+LS, -LS, HOMELS)
Other Functions	_	Speed-filter value setting function Current setting function Electric gear function Setting function for direction of motor rotation Emergency stop function Over-travel function Software over-travel funtion Alarm trace-back function Daisy-chain connections
Terminal Emulation	_	Connection standard: RS-232C confomity Transfer system: Asynchronous communication, NRZ (Non return to zero), Full duplex Data length: 8 bits, 1 stop bit, No parity Transmit speed: 9600 bps Connector specification: Modular (4 wires, 4 pins) Pin arrangement: RS232 Compatible Protocol: TTY (CR+LF)

*The rates of acceleration and deceleration can be set separately.

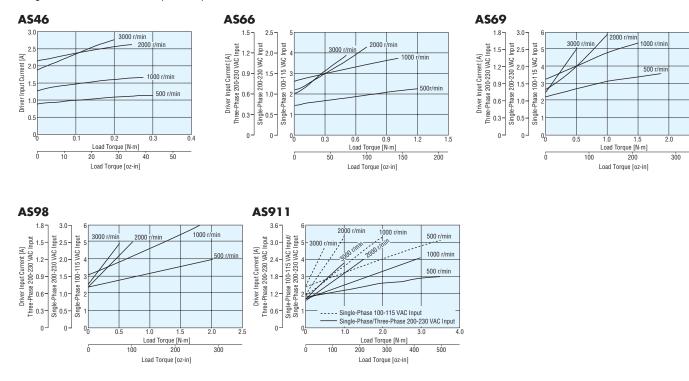
General Specifications


This is the value after rated operation at normal temperature and normal humidity.

Specifi	cations	Motor	Driver		
Motor Insula	tion Class	Class B [130°C (266°F)][UL/CSA: Recognized as class A 105°C (221°F)]	-		
Insulation Re	esistance	100 MΩ minimum when measured by a 500 VDC megger between the 100 MΩ minimum when measured by a 500 VDC megger between the following places Frame-Windings · Frame-Windings - Frame-Power supply input terminal · Frame-Electromagnetic brake windings - I/O-Power supply input terminal			
Dielectric Str	rength	Sufficient to withstand the following for one minute: • Frame-Windings 1.5 kV (1.0 kV for AS46) 50 Hz or 60 Hz • Frame-Electromagnetic brake windings 1.0 kV 50 Hz or 60 Hz	Sufficient to withstand the following for one minute: • Frame-Power supply input terminal 1.5 kV 50 Hz or 60 Hz • I/O-Power supply input terminal 2.3 kV (3.0 kV for 200-230 VAC) 50 Hz or 60 Hz: Pulse input package 1.8 kV 50 Hz or 60 Hz: Built-in controller package		
Operating	Ambient Temperature	$0^{\circ}C \rightarrow +50^{\circ}C (+32^{\circ}F \rightarrow +122^{\circ}F)$ (nonfreezing): Standard Type TH · PN Geared Type $0^{\circ}C \rightarrow +40^{\circ}C (+32^{\circ}F \rightarrow +104^{\circ}F)$ (nonfreezing): Harmonic Geared Type	$0^{\circ}C \sim +50^{\circ}C (+32^{\circ}F \sim +122^{\circ}F)$ (nonfreezing): Pulse input package $0^{\circ}C \sim +40^{\circ}C (+32^{\circ}F \sim +104^{\circ}F)$ (nonfreezing): Built-in controller package		
Environment (In Operation)	Ambient Humidity	85% or less (n	ioncondensing)		
	Atmosphere	No corrosive gases, dust, water or oil (Stan	dard IP65 rated motor: No corrosive gases.).		
Static Angle	Error	±5 arc minutes (0.084°) -			
Shaft Runout	t	0.05 mm (0.002 inch) T.I.R. – –			
Concentricity	1	0.075 mm (0.003 inch) T.I.R.* –			
Perpendicula	arity	0.075 mm (0.003 inch) T.I.R.*	-		

*T.I.R. (Total Indicator Reading): The total dial gauge reading when the measurement section is rotated one revolution centered on the reference axis center.

Note:


•Do not measure insulation resistance or perform the dielectric strength test while the motor and driver are connected.

Load Torque – Driver Input Current Characteristics

This is the relationship between the load torque and driver input current at each speed when the motor is operated. From these characteristics, the current capacity required when used for multiple axes can be estimated. For geared motors convert to torque and speed at the motor axis.

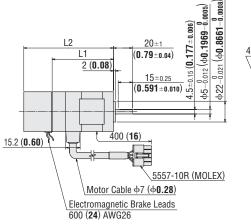
Motor shaft speed = Gear output shaft speed×Gear ratio [r/min] Motor shaft torque = $\frac{\text{Gear output shaft torque}}{\text{Gear ratio}}$ [N·m (oz-in)]

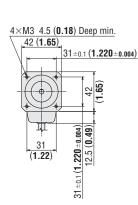
Permissible Overhung Load and Permissible Thrust Load

Туре	Model	Gear Ratio	Overhung Load Gear Ratio Distance from Shaft End mm (in.)					Thrust Load	
51			0	5 (0.2)	10 (0.39)	15 (0.59)	20 (0.79)		
	AS46□A AS46□AP		20 (4.5)	25 (5.6)	34 (7.6)	52 (11.7)	-		
Standard Type Standard Type IP65 Rated Motor	AS66 E AS66A T AS66 EP AS66A TP AS69 E AS69A T AS69 EP AS69A TP	_	63 (14.1)	75 (16.8)	95 (21)	130 (29)	190 (42)	The permissible thrust load shall be no greater than the motor	
	AS98 E AS98AT AS98 EP AS911AE AS911AT AS911AEP AS911ATP		260 (58)	290 (65)	340 (76)	390 (87)	480 (108)	than the motor mass.	
	AS46□A-T■ AS46□AP-T■		10 (2.2)	14 (3.1)	20 (4.5)	30 (6.7)	-	15 (3.3)	
TH Geared Type	AS66 E-T AS66 EP-T	3.6, 7.2, 10, 20, 30	70 (15.7)	80 (18)	100 (22)	120 (27)	150 (33)	40 (9)	
	AS98 E-T		220 (49)	250 (56)	300 (67)	350 (78)	400 (40)	100 (22)	
	AS46 A-N AS46 AP-N	7.2, 10	100 (22)	120 (27)	150 (33)	190 (42)	-	- 100 (22)	
	AS66 E-N5 AS66 EP-N5		200 (45)	220 (49)	250 (56)	280 (63)	320 (72)		
	AS66	7.2, 10	250 (56)	270 (60)	300 (67)	340 (76)	390 (87)		
	AS66 EP-N	25, 36, 50	330 (74)	360 (81)	400 (90)	450 (101)	520 (117)		
PN Geared Type	AS98 E-N5 AS98 EP-N5	_	480 (108)	520 (117)	550 (123)	580 (130)	620 (139)		
	AS98 E-N	7.2, 10	480 (108)	540 (121)	600 (135)	680 (153)	790 (177)		
	AS98 E-N25 AS98 EP-N25		850 (191)	940 (210)	1050 (230)	1110 (240)	1190 (260)	300 (67)	
	AS98E-N36 AS98EP-N36	_	930 (200)	1030 (230)	1150 (250)	1220 (270)	1300 (290)		
	AS98E-N50 AS98EP-N50		1050 (230)	1160 (260)	1300 (290)	1380 (310)	1490 (330)		
	AS46_A2-H AS46_AP2-H		180 (40)	220 (49)	270 (60)	360 (81)	510 (114)	220 (49)	
Harmonic Geared Type	AS66 E-H	50, 100	320 (72)	370 (83)	440 (99)	550 (123)	720 (162)	450 (101)	
	AS98 E-H		1090 (240)	1150 (250)	1230 (270)	1310 (290)	1410 (310)	1300 (290)	

•Enter **A** (standard) or **M** (electromagnetic brake) in the box (
) within the model name. Enter the power supply voltage **A**, **C** or **S** in the box (
) within the model name.

Enter the gear ratio in the box (III) within the model name.

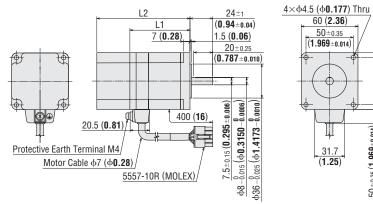

Dimensions Unit = mm (inch)


Motor

♦Standard Type

1 □42 mm (□1.65 in.)

Model	Motor Model	L1 mm (in.)	L2 mm (in.)	Mass kg (lb.)	CAD
AS46AA AS46AAP	ASM46AA	64.9 (2.56)	-	0.5 (1.1)	B192
AS46MA AS46MAP ASM46MA		-	94.9 (3.74)	0.6 (1.32)	B193

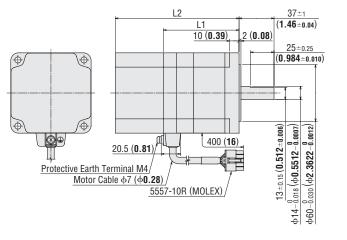

60 (2.36)

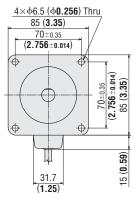
 $\frac{50\pm0.35\ (\textbf{1.969}\pm\textbf{0.014})}{15\ (\textbf{0.59})}$

2 60 mm (2.36 in.)

Model	Motor Model	L1 mm (in.)	L2 mm (in.)	Mass kg (lb.)	CAD
AS66A E AS66A EP	ASM66ADE	63.6 (2.50)	—	0.85 (1.9)	B406
AS66M□E AS66M□EP	ASM66M_E	_	98.6 (3.88)	1.1 (2.4)	B407
AS69A E AS69A EP	ASM69ADE	94.6 (3.72)	_	1.4 (3.1)	B408
AS69M□E AS69M□EP	ASM69M_E	_	129.6 (5.1)	1.65 (3.6)	B409

●Enter the power supply voltage **A**, **C** or **S** in the box (□) within the model name.

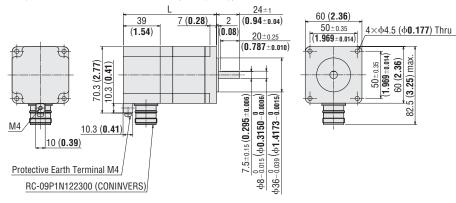

Features


Line-up

3 □85 mm (□3.35 in.)

Model	Motor Model	L1 mm (in.)	L2 mm (in.)	Mass kg (lb.)	CAD
AS98A E AS98A EP	ASM98ADE	80 (3.15)	—	1.8 (4.0)	B410
AS98M□E AS98M□EP	ASM98M□E	—	131 (5.16)	2.2 (4.8)	B411
AS911A E AS911A EP		110 (4.33)	_	3 (6.6)	B412

•Enter the power supply voltage \mathbf{A} , \mathbf{C} or \mathbf{S} in the box (\Box) within the model name.

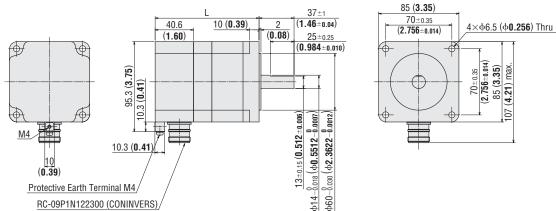

♦ Standard Type IP65 Rated Motor

4 □60 mm (□2.36 in.)

Model	Model Motor Model		Mass kg (lb.)	CAD
AS66A□T AS66A□TP	ASM66ADT	98.7 (3.89)	1 (2.2)	B364
AS69A□T AS69A□TP	ASM69ADT	129.7 (5.11)	1.5 (3.3)	B365

•Enter the power supply voltage \mathbf{A} , \mathbf{C} or \mathbf{S} in the box (\Box) within the model name.

Always use the motor cable for IP65 rated motor (sold separately) for connection between the IP65 rated motor and the driver.



5 🗆 85 mm (🗆 3.35 in.)

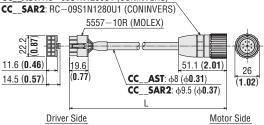
Model	Motor Model	L mm (in.)	Mass kg (lb.)	CAD
AS98A□T AS98A□TP	ASM98ADT	110 (4.33)	2.2 (4.8)	B317
AS911A_T AS911A_TP	ASM911ADT	140 (5.51)	3.3 (7.3)	B318

•Enter the power supply voltage \mathbf{A} , \mathbf{C} or \mathbf{S} in the box (\Box) within the model name.

Always use the motor cable for IP65 rated motor (sold separately) for connection between the IP65 rated motor and the driver.

Requirement for motor cable for IP65 rated motor (sold separately)

Always use the motor cable for IP65 rated motor (sold separately) for connection between the IP65 rated motor and the driver. The IP65 rated motor cannot be driven unless the dedicated motor cable is used.


◇Motor cables for IP65 Rated Motor

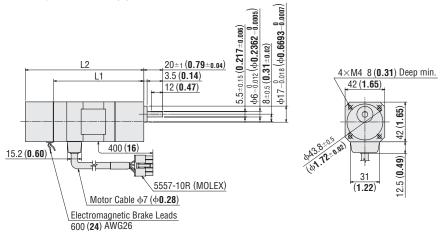
mateu mo	
Model	Length L m (ft.)
CC01AST	1 (3.3)
CC02AST	2 (6.6)
CC03AST	3 (9.8)
CC05AST	5 (16.4)
CC07AST	7 (23)
CC10AST	10 (32.8)
CC15AST	15 (49.2)
CC20AST	20 (65.6)

◇Flexible Motor Cables for IP65 Rated Motor

Model	Length L m (ft.)
CC01SAR2	1 (3.3)
CC02SAR2	2 (6.6)
CC03SAR2	3 (9.8)
CC05SAR2	5 (16.4)
CC07SAR2	7 (23)
CC10SAR2	10 (32.8)

Line-up

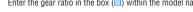
Functions System Configuration

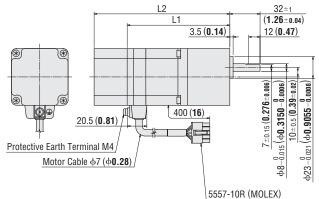

Product Line

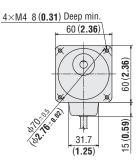
○TH Geared Type

6 □42 mm (□1.65 in.)

Model	Motor Model	Gear Ratio	L1 mm (in.)	L2 mm (in.)	Mass kg (lb.)	CAD
AS46AA-T AS46AAP-T	ASM46AA-T	3.6, 7.2, 10, 20, 30	95.4 (3.76)	_	0.65 (1.43)	B199
AS46MA-T AS46MAP-T	ASM46MA-T			125.4 (4.94)	0.75 (1.7)	B200

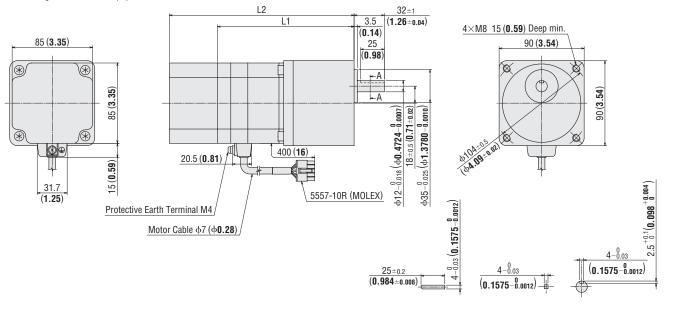

•Enter the gear ratio in the box (
) within the model name.




7 60 mm (2.36 in.)

Model	Motor Model	Gear Ratio	L1 mm (in.)	L2 mm (in.)	Mass kg (lb.)	CAD
AS66A E-T AS66A EP-T	ASM66ADE-T	3.6, 7.2, 10, 20, 30 -	108.6 (4.28)	—	1.25 (2.8)	B413
AS66M E-T AS66M EP-T	ASM66M□E-T□		—	143.6 (5.65)	1.5 (3.3)	B414

•Enter the power supply voltage \mathbf{A} , \mathbf{C} or \mathbf{S} in the box (\Box) within the model name. Enter the gear ratio in the box (
) within the model name.

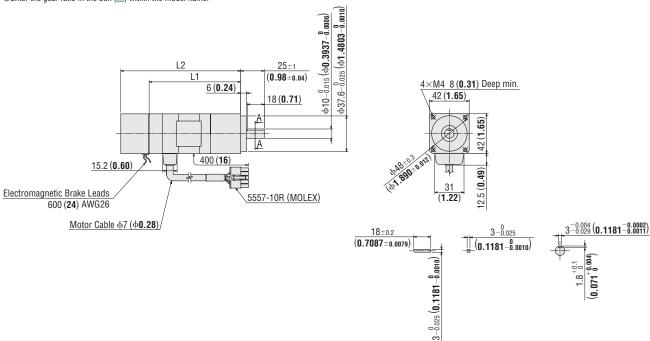


Model	Motor Model	Gear Ratio	L1 mm (in.)	L2 mm (in.)	Mass kg (lb.)	CAD
AS98A_E-T AS98A_EP-T	ASM98ADE-T	3.6, 7.2, 10, 20, 30 -	144.5 (5.69)	_	3 (6.6)	B415
AS98M□E-T □ AS98M□EP-T □	ASM98M_E-T		—	195.5 (7.70)	3.4 (7.5)	B416

●Enter the power supply voltage A, C or S in the box (□) within the model name.

Enter the gear ratio in the box (
) within the model name.

Parallel Key (Included)


Shaft Cross Section AA

$\Diamond \textbf{PN} \text{ Geared Type}$

9 42 mm (1.65 in.)

Model	Motor Model	Gear Ratio	L1 mm (in.)	L2 mm (in.)	Mass kg (lb.)	CAD
AS46AA-N AS46AAP-N	ASM46AA-N	7.2, 10	96.9 (3.18)	—	0.71 (1.6)	B306
AS46MA-N AS46MAP-N	ASM46MA-N		_	126.9 (5.0)	0.81 (1.8)	B307

•Enter the gear ratio in the box () within the model name.

Line-up

Product Line

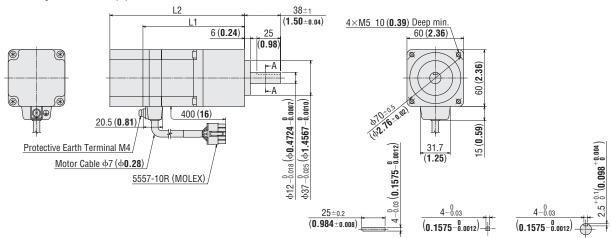
istics

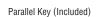
Dimensions Connection and Operation

List of Motor and

How to Read Specifications and Characteristics Accessories Stepping Motor Controllers

DC Input ASC Series

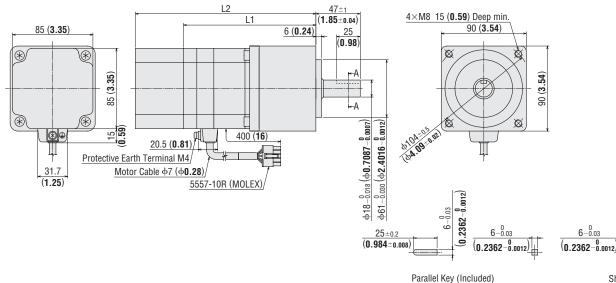

Shaft Cross Section AA


10 60 mm (2.36 in.)

Model	Motor Model	Gear Ratio	L1 mm (in.)	L2 mm (in.)	Mass kg (lb.)	CAD
AS66A E-N AS66A EP-N	ASM66A□E-N	5, 7.2, 10	107.6 (4.24)	—	1.5 (3.3)	B425
		25, 36, 50	123.6 (4.87)	— <u>1.7</u> (3.7)	B426	
AS66M_E-N_ AS66M_EP-N		5 7 7 10 -	142.6 (5.61)	1.75 (3.9)	B427	
	ASM66M□E-N <mark>□</mark>	25, 36, 50		1.95 (4.3)	B428	

•Enter the power supply voltage \mathbf{A} , \mathbf{C} or \mathbf{S} in the box (\Box) within the model name.

Enter the gear ratio in the box (
) within the model name.


Shaft Cross Section AA

11 🗆 90 mm (🗆 3.54 in.)

Model	Motor Model	Gear Ratio	L1 mm (in.)	L2 mm (in.)	Mass kg (lb.)	CAD
AS98A_E-N_ AS98A_EP-N_	ASM98ADE-N	E-N 5, 7.2, 10 140 (5.51) - 25, 36, 50 163 (6.42) -		—	4 (8.8)	B429
			_	4.7 (10)	B430	
AS98M_E-N_ AS98M_EP-N_	ASM98MDE-N	5, 7.2, 10 — ¹⁹¹ (7.52)	4.4 (9.7)	B431		
		25, 36, 50	(6.42) (10) (6.42) (10) (10)	B432		

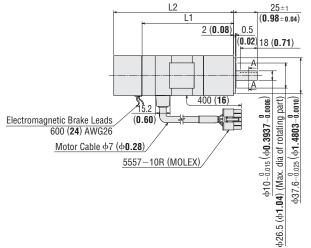
•Enter the power supply voltage \mathbf{A} , \mathbf{C} or \mathbf{S} in the box (\Box) within the model name.

Enter the gear ratio in the box (
) within the model name.

Shaft Cross Section AA

6-0.03

 $(0.138^{+0.004})$

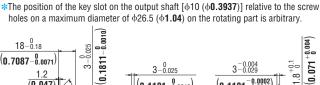

3.5

⊘Harmonic Geared Type

12 42 mm (1.65 in.)

Model	Motor Model	Gear Ratio	L1 mm (in.)	L2 mm (in.)	Mass kg (lb.)	CAD
AS46AA2-H AS46AAP2-H	ASM46AA2-H	50 100	96.9 (3.81)	—	0.7 (1.5)	B308
AS46MA2-H AS46MAP2-H	ASM46MA2-H	50, 100	_	126.9 (5.0)	0.8 (1.8)	B309

Enter the gear ratio in the box (
) within the model name.


(\$1.890-0.13 (\$1.890-0.13) 4×M4 8 (0.31) Deep min. 42 (1.65) φ20.5±0.2 **0.807**±0.008) 5 5 12.5 (0.49) 31 6×M3 5 (0.20) Deep min.* (1.22)

18-0.18

(0.7087-0.0071)

12

(0.047)

(**0.1181**-0.0010

Parallel Key (Included)

Parallel Key (Included)

8

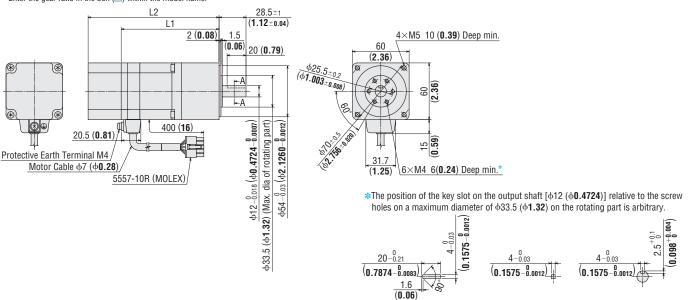
Shaft Cross Section AA

 $(\mathbf{0.1181}^{-0.000}_{-0.001}$

œ

Dimensions Connection and Operation DC Input ASC Series

How to Read Specifications and Characteristics Accessories Stepping Motor


Controllers

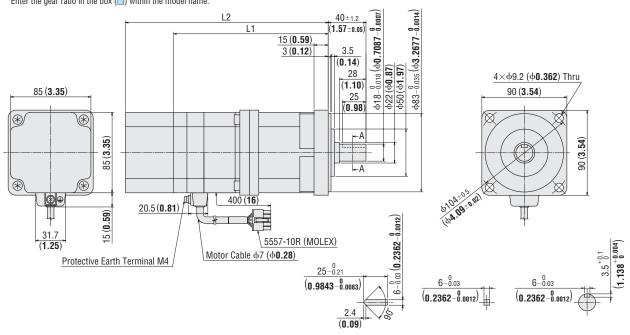
13 60 mm (2.36 in.)

Model	Motor Model	Gear Ratio	L1 mm (in.)	L2 mm (in.)	Mass kg (lb.)	CAD
AS66A E-H AS66A EP-H	ASM66ADE-H	50 100	103.6 (4.08)	_	1.4 (3.1)	B433
AS66M_E-H_ AS66M_EP-H_	ASM66MDE-H	50, 100		138.6 (5.46)	1.65 (3.6)	B434

•Enter the power supply voltage A, C or S in the box (\Box) within the model name.

Enter the gear ratio in the box (
) within the model name.

Shaft Cross Section AA


Line-up

14 🗆 90 mm (🗆 3.54 in.)

Model	Motor Model	Gear Ratio	L1 mm (in.)	L2 mm (in.)	Mass kg (lb.)	CAD
8A□E-H □ 8A□EP-H □	ASM98ADE-H	50, 100	163.5 (6.44)	—	3.9 (8.6)	B435
8M□E-H □ 8M□EP-H □	ASM98MDE-H	50, 100	_	214.5 (8.44)	4.3 (9.5)	B436

•Enter the power supply voltage \mathbf{A} , \mathbf{C} or \mathbf{S} in the box (\Box) within the model name.

Enter the gear ratio in the box (
) within the model name.

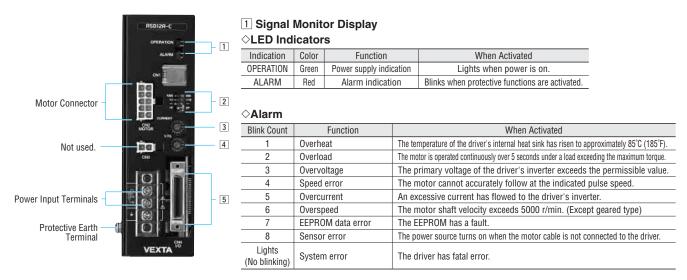
Parallel Key (Included)

Shaft Cross Section AA

Mounting Bracket

(2 pieces, included) 25 (0.39)(0.98) 3 (0.12) 4.5 ē (**0.177**) (69) 43 (1. 25 (**0.98**) 10 (**0.39**) 2×43.5 (40.138) Countersink 45 (1.77)

Control I/O Connector Cover Assembly: 54331-0361 (MOLEX) 54306-3619 (MOLEX) Connector:


Sensor Input Connector Cover Assembly: 54331-0201 (MOLEX) Connector: 54306-2019 (MOLEX) Accessories Stepping Motor Controllers

How to Read Specifications and Characteristics

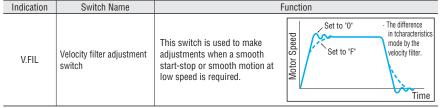
Product Line

Connection and Operation (Pulse Input Package)

Names and Functions of Driver Parts

2 Function Switches

Indication	Switch Name	Function	In
1000/500 ×1/×10	Resolution select switch	This function is for selecting the motor resolution. For each geared type, the resolution of gear output shaft is 1/gear ratio. "1000" " \times 1" \rightarrow 1000 Pulses (0.36°/step) "1000" " \times 10" \rightarrow 10000 Pulses (0.036°/step) "500" " \times 1" \rightarrow 5000 Pulses (0.72'/step) "500" " \times 10" \rightarrow 5000 Pulses (0.072'/step)	
1P/2P	Pulse input mode switch	The settings of this switch are compatible with the following two types of pulse input modes: "1P" for the 1-pulse input mode, "2P" for the 2-pulse input mode.	


Notes:

Always turn the power off before switching resolution or pulse input, and turn it ON again after you have made the change.
 If the Resolution Select Switch is set to "×10," it cannot control the resolution selected by the input terminals. It will always be "×10."

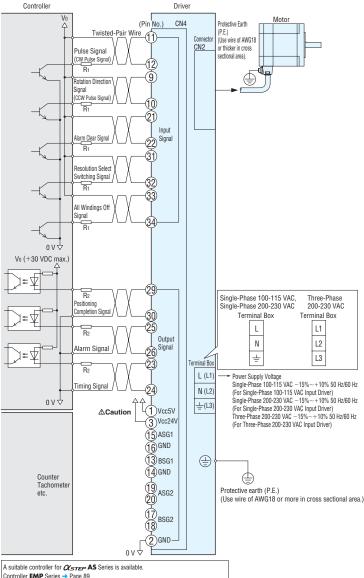
3 Current Adjustment Switch

Indication Switch Name		Function
CURRENT	Current adjustment switch	The motor running current can be lowered to suppress temperature rise in the motor and driver, or lower operating current in order to allow a margin for motor torque.

4 Velocity Filter Adjustment Switch

5 Input/Output Signals

			J			
Indication	Input/Output	Pin. No	Signal	Name of Signal		
	External	1	Vcc+5V	Damasa		
	power input	2	GND	Power supply for signal control		
		3	Vcc+24V			
		9	DIR. (CCW)	Rotation direction		
	Input	10	DIR. (CCW)	(CCW pulse)*		
	signal	11	PLS (CW)	Pulse		
		12	PLS (CW)	(CW pulse)*		
		13	BSG1	B-phase pulse output		
		14	GND	(Open-collector)		
		15	ASG1	A-phase pulse output		
	Output	16	GND	(Open-collector)		
	signal	17	BSG2	B-phase pulse output		
		18	BSG2	(Line driver)		
		19	ASG2	A-phase pulse output		
CN4		20	ASG2	(Line driver)		
	Input	21	ACL	Alarm clear		
	signal	22	ACL			
		23	TIM.1	Timing		
		24	GND	(Open-collector)		
		25	ALARM	Alarm		
	Output	26	ALARM	Λιαιτιί		
	signal	27	TIM.2	Timing		
		28	TIM.2	(Line driver)		
		29	END	Positioning		
		30	END	completion		
		31	×10	Resolution select		
	Input	32	×10			
	signal	33	C.OFF	All windings off		
		34	C.OFF			
Description of Input/Output Signals -> Page 38						


Description of Input/Output Signals -> Page 38

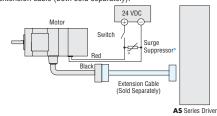
*Signal name in parentheses represents the setting in 2-pulse input mode.

Line-up AC Input AS Series Functions

System Configuration Product Line

Driver Cable -> Page 76

Connecting the Electromagnetic Brake to Power Supply


Connect the electromagnetic brake to the power supply using a cable with a conductor cross-sectional area of at least AWG24. The power supply input to the electromagnetic brake is 24 VDC $\pm 5\%$ 0.3 A minimum (AS46: 0.1 A minimum) and therefore must be independent of the driver's power supply for signal control.

Notes

- Applying a voltage that exceeds the specifications will cause the electromagnetic brake to generate a great amount of heat, resulting in motor temperature rises and possible damage to the motor. Conversely, if voltage is too low, the electromagnetic brake may not release. To protect the switch contacts and prevent noise, always connect the surge suppressor (Included). (*The surge suppressor is included with electromagnetic brake motors.)
- To prevent noise, use a dedicated power supply for electromagnetic brake.
- Correct polarity (+ and -) must be ensured when connecting the electromagnetic brake lead wire of AS Series to the DC power supply. If polarity is incorrect, the electromagnetic brake will not operate. When using as a CE certified part, use a dedicated DC power supply for electromagnetic hrake

(1)**AS46**

The electromagnetic brake wire is linked to the connector on the motor [600 mm (23.6 in.)]. When connecting with the DC power supply, connect the red spiral lead wire to +24 V, and the black lead wire to the ground (GND). Use the extension cable or the flexible extension cable (both sold separately)

◇Input Signal Connection

Signals can be connected directly when 5 VDC is supplied. If the signals are used at a voltage exceeding 5 VDC, be sure to provide an external resistor to prevent the current exceeding 20 mA from flowing. Internal components will be damaged if a voltage exceeding 5 VDC is supplied directly without using an external resistor. Example) If the voltage is 24 VDC, connect a resistor (R₁) of 1.5 to 2.2 k Ω and 0.5 W or more

◇Output Signal Connection

- Use output signals at 30 VDC or less and 15 mA or less.
- If these specifications are exceeded, the elements may be damaged. Check the specification of the connected equipment.
- When the current is above 15 mA, connect the external resistor R2.

◇Notes on Wiring

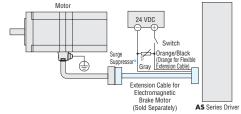
- •Use a multi-core, twisted-pair shielded wire AWG28 or thicker for the control input/output signal line (CN4), and keep wiring as short as possible [within 2 m (6.6 ft.)].
- Note that as the length of the pulse signal line increases, the maximum transmission frequency decreases.
- When it is necessary to have a connection more than 0.4 m (1.31 ft.) between motor and driver, the optional extension cable or flexible extension cable must be used. Electromagnetic brake motor models [except motor frame size 42 mm (1.65 ft.)] must use an electromagnetic brake extension cable or flexible extension cable (sold separately). The frame size 42 mm (1.65 ft.) models can use a standard extension cable even for electromagnetic brake motor models.

Always use the motor cable for IP65 rated motor (sold separately) for connection between the IP65 rated motor and the driver •Use the following cable for the power line:

- Single-phase 100-115VAC, Single-phase 200-230VAC : 3-core cable with a conductor cross-sectional area of at least AWG18.
- Three-phase 200-230VAC : 4-core cable with a conductor cross-sectional area of at least AWG18.
- Provide a minimum distance of 300 mm (1 ft.) between the control I/O signal line and power lines (AC lines, motor lines and other large-current circuits). Do not run the control I/O signal line in the same duct as power lines or bundle it with power lines.
- To ground the driver, lead the ground conductor from the protective ground terminal (M4) and connect the ground conductor to provide single-point arounding

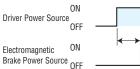
∆Caution

If the timing signal output or pulse signal output is used, a 5 VDC or 24 VDC power supply is required. Connect the power supply for timing signal output or pulse signal output to either 5 VDC or 24 VDC. Do not input 5 VDC and 24 VDC at the same time. Description of Output Signals → Page 39

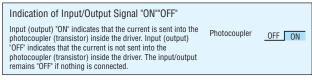

Recommended Crimp Terminals

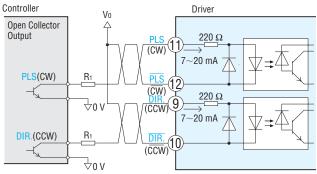
Crimp terminals are not provided with the package. They must be furnished separately.

(2)AS66, AS69, AS98


The electromagnetic brake wire is linked to the connector on the driver connection side of extension cable for electromagnetic brake motor (sold separately). Be sure to use the accessory (sold separately) extension cable or flexible extension cable. Connect the orange/black spiral lead wire (orange for flexible extension cable)[60 mm (23.6 in.)] to +24 V, and the gray lead wire [60 mm (2.36 in.)] to the ground (GND).

0.5 s min.

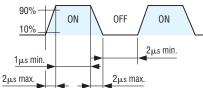

The load may fall down due to a loss of holding torque.



37

Description of Input/Output Signals

PLS (CW) and DIR. (CCW) Input Signal Output Circuit and Sample Connection



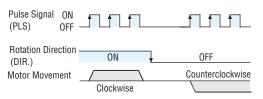
•The colored characters indicate signals under the 1-pulse input mode, while the black characters indicate signals under the 2-pulse input mode.

Note:

The external resistance is not needed when Vo is 5 VDC. When the voltage exceeds 5 VDC, connect the external resistance R₁ to keep input current at 20 mA or less. When 5 VDC or more is applied without the external resistance, the elements may get damaged.

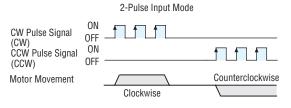
◇Pulse Waveform Characteristics

•For pulse signals, use input pulse waveforms like those shown the figure above.

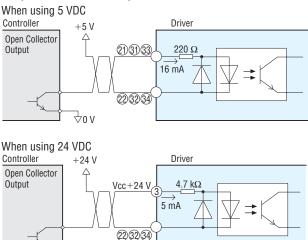

◇Pulse Input Modes

<1-Pulse Input Mode>

The 1-pulse input mode uses Pulse (PLS) and Rotation Direction (DIR.) signals. CW is selected by inputting DIR. signal at low level (with the input photocoupler ON), CCW by inputting at high level (with input photocoupler OFF).


[Rotation Direction Signals] Photocoupler "ON": Clockwise

Photocoupler "OFF": Counterclockwise 1-Pulse Input Mode


<2-Pulse Input Mode>

The 2-pulse input mode is used for "CW" and "CCW" pulses. When "CW" pulses are input, the motor's output shaft rotates clockwise when the motor is viewed facing the shaft; when "CCW" pulses are input, the shaft rotates counterclockwise.

All Windings OFF (C.OFF) Input Signal Resolution Select (\times 10) Input Signal Alarm Clear (ACL) Input Signal

◇Input Circuit and Sample Connection

◇All Windings OFF (C.OFF) Input Signal Pin No.3, 3

₽oγ

This controller power source offers a choice of either 5 VDC or 24 VDC. Inputting the All Windings Off (C.OFF) signal puts the motor in a non-excitation (free) state. It is used when turning the motor shaft externally or when positioning manually. This signal clears the deviation counter.

\diamond Resolution Select (imes10) Input Signal

Pin No.31, 32

Motor

This controller power source offers a choice of either 5 VDC or 24 VDC.

Inputting this signal when 1000 P/R or 500 P/R is selected as resolution via the function switch will increase the resolution ten-times to 10000 P/R or 5000 P/R.

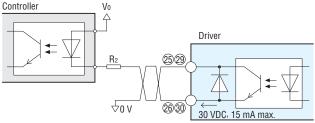
Note:

While the resolution select switch is set to 10000 P/R or 5000 P/R, input of this signal will not change the resolution.

◇Alarm Clear (ACL) Input Signal

Pin No.21, 22

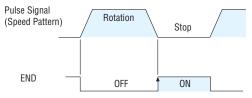
This controller power source offers a choice of either 5 VDC or 24 VDC. This signal is used for canceling the alarm without turning off power to the driver when a protection circuit has been activated.


Note:

The following alarm cannot be cleared. To cancel the alarm, first resolve the cause and check for safety, and then turn power on again.

· Overcurrent · EEPROM data error · System error

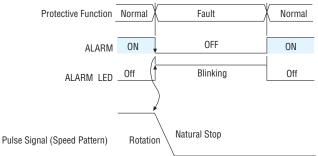
Position Completion (END) Output Signal Alarm (ALARM) Output Signal


◇Output Circuit and Sample Connection

◇Position Completion (END) Output Signal Pin No.29, 30

Circuit for use with 30 VDC, 15 mA maximum.

This signal is output at the photocoupler ON state when positioning is completed. This signal is output when the rotor position is less than \pm 1.8° from the command position, approximately 2 ms after the pulse input stops.

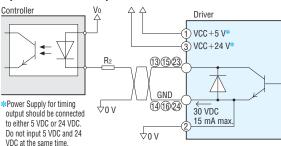

Note:

The END signal flashes during operation with a pulse input frequency of 500 Hz or less.

◇Alarm (ALARM) Output Signal

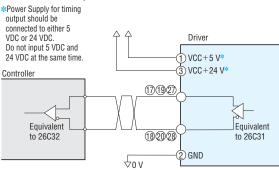
Pin No.25, 26

Circuits for use with 30 VDC, 15 mA maximum. The photocoupler turns OFF when one of the driver's protection circuits has been activated. When an abnormality such as an overload or over current is detected, the alarm signal will output, the ALARM indicator blinks, and the motor stops (non-excitation state). To cancel the alarm, first resolve the cause and check for safety, and then input an Alarm Clear (ACL) signal or reset power. Once power has been turned off, wait at least 10 seconds before turning it on again.

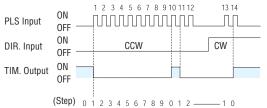

Notes:

- The alarm output uses positive logic (Normally Closed), all other outputs use negative logic (Normally Open).
- The ALARM indicator lights (not blinks) when system error protective function has been activated.

Excitation Timing Signal (TIM.) Output Signal Quadrature (ASG1/BSG1, ASG2/BSG2) Output Signal


Output Circuit and Sample Connection

Open-Collector Output


Circuits for use with 30 VDC, 15 mA maximum.

Line Driver Output

◇Excitation Timing Signal (TIM.) Output Signal Pin No.②, ②, ②, ③

When the Excitation Timing signal is output, the transistor turns ON (For the line driver output which is TIM.2, the output signal is ON). This signal can be used to detect the home position with greater precision. This signal is output 50 times per motor shaft revolution.

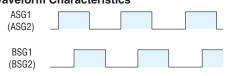
Notes:

A precise timing signal cannot be obtained when the speed of the pulse input frequency is over 500 Hz.

When the Timing Signal Output is used, 5 VDC or 24 VDC power supply is necessary.

◇Quadrature (ASG1/BSG1, ASG2/BSG2) Output Signal Pin No.(3)~20

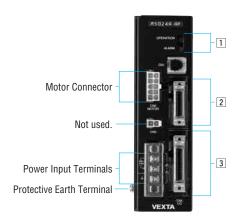
A counter or similar device can be connected to monitor the position of the motor.


The pulse resolution is the same as the motor resolution at the time of power-on.

[Example: Resolution select switch (1000 P/R) \rightarrow Output pulse number for each motor revolution (1000).] The phase difference between A and B is 90° electrical.

Notes:

- The pulse output accuracy is, regardless of resolution, within $\pm 0.36^\circ$ (repetition accuracy: within $\pm 0.09^\circ$).
- When the "quadrature" signal output is used, 5 VDC or 24 VDC power supply is necessary. These signals are only for position verification when the motor has stopped. There is a 1 ms (maximum) time lag between real rotor motion and the output signals.


◇Pulse Waveform Characteristics

(Clockwise Rotation of Motor)

Connection and Operation (Built-In Controller Package)

Names and Functions of Driver Parts

1 Signal Monitor Display

♦LED Indicators

Indication	Color Function		When Activated
OPERATION	Green	Power supply indication	Lights when AC power is on.
ALARM	Red	Alarm Indication	Blinks when protective functions are activated.

⇔Alarm

Blink Count	Protective Function	When Activated	Alarm Code Output	Operation	Reset
	Stack overflow	Too many nested LOOP, ENDL, CALL, etc.	90h (Decimal: 144)		
	Memory read error	The data stored in the memory is damaged.	91h (Decimal: 145)	_	
	Program reference error	The called program does not exist.	94h (Decimal: 148)		
1	Compilation error	The executed program is not executable.	95h (Decimal: 149)	The program stops.	
	Operation result overflow	The operation result exceeds the range of -8388608 to $+8388607$.	98h (Decimal: 152)	The motor performs stop operation set	* Possible
	Parameter out-of-range error	The parameter exceeds its setting range.	99h (Decimal: 153)	by MSTOPACT.	
	Divide by zero	Divide by zero was executed.	9Ah (Decimal: 154)		
	General I/O definition error	The signal assignment method for general I/O ports was not correct.	9Ch (Decimal: 156)		
	PC command execution error A PC command was executed while the motor was operating or not energized.		9Dh (Decimal: 157)		
	Overheat protection	The temperature of the heat sink in the driver has reached approx. 85°C (185°F).	21h (Decimal: 33)		
2	Overload protection	A load exceeding the maximum torque was applied to the motor for the duration set by the OLTIME command.	30h (Decimal: 48)	The motor loses it's holding torque.	* Possible
	Overspeed error The speed of the motor's output shaft has exceeded 5000 r/min.		31h (Decimal: 49)	-	
3	Overvoltage protection	The driver's primary inverter voltage has exceeded the limit of tolerance.	22h (Decimal: 34)	The motor loses it's holding torgue.	* Possible
4	Excessive position deviation	The position of the motor's output shaft has deviated from the position specified by the operation command, by at least the number of revolutions set by the OVERFLOW command.	10h (Decimal: 16)	The motor loses it's holding torque.	* Possible
5	Overcurrent protection	An excessive current has flowed into the power element of the driver's inverter section.	20h (Decimal: 32)	The motor loses it's holding torque.	* Impossib
6	Emergency stop	An E-STOP signal has been input.	68h (Decimal: 104)	The program stops. The motor loses it's holding torque (ESTOPACT = 0).	* Possible
	Incorrect limit-sensor logic	Both the $+LS$ and $-LS$ are ON simultaneously.	60h (Decimal: 96)		
	Reverse limit-sensor connection	The +LS and -LS are connected in reverse.	61h (Decimal: 97)	The motor stops immediately.	
	Mechanical home seeking error	Mechanical home seeking could not be executed correctly.	62h (Decimal: 98)		
7	Overtravel	The motor has exceeded its hardware limit.	66h (Decimal: 102)	The program stops. The motor stops immediately (ESTOPACT= 1).	* Possible
	Software overtravel	The motor has exceeded its software limit.	67h (Decimal: 103)	Decelerates to a stop.	
	Emergency stop An E-STOP signal has been input.		68h (Decimal: 104)	The motor stops immediately.	
	Invalid operation data	An inoperable operation pattern has been started.		Motion is stopped.	
0	Resolver sensor error	The motor cable has not been connected or a motor's error has occurred in a sensor.	(Decimal: 112) 42h (Decimal: 66)	The motor loses it's	*
8	Initial rotor revolution error Initial rotor revolution error Initial rotor revolution error		43h (Decimal: 67)	holding torque.	Impossib
9	NVRAM error	Motor control parameters has been damaged.	41h (Decimal: 65)	The motor loses it's holding torque.	* Impossib
Stays ON.	System error	Driver failure has occurred.	F0h (Decimal: 240)	The motor loses it's holding torque.	* Impossib

 $\ensuremath{\ast} Possible$ - The Alarm can be cleared with the ALMCLR command or an ACL input.

Impossible - The AC power must be cycled to clear these alarms.

2 Limit Sensor Input Communication Signals (CN5)

Connector	Pin No.	Input/Output	Signal	Signal Name
	1	Input	COM1	Power source for input signals
	2	Input	COM2	Power source for input signals
	3	—	—	No Connection
	4	_	—	No Connection
	5	Output	TX	RS-232C Transmit
	6	—	—	No Connection
	7	Input	RX	RS-232C Receive
	8	—	—	No Connection
	9	_	—	No Connection
CN5	10	Input	N24	External power supply terminal (GND)
	11		COM1	Power source for input signals
	12		COM2	Power source for input signals
	13		+LS	+LS limit sensor
	14		-LS	–LS limit sensor
	15	loput	HOMELS	HOME sensor
	16	Input	SENSOR	Sensor
	17		—	No connection
	18			No connection
	19		COM1	Power source for input signals
	20		COM2	Power source for input signals

3 I/O Signals (CN4)

Connector	Pin No.	Input/Output	Signal	Signal Name
	1	Input	P24	Power source for RS-232C, ASG and BSG (24 VDC)
	2	IIIput	N24	Power source for RS-232C, ASG and BSG (GND)
	3		YO	
	4		YO	
	5		Y1	
	6		Y1	General output*1
	7		Y2	(Y0 to Y3)
	8	Output	<u>Y2</u>	
	9	Output	Y3	
	10		<u>¥3</u>	
	11		ASG	Phase A pulse output
	12		ASG	(Line driver output)
	13		BSG	Phase B pulse output
	14		BSG	(Line driver output)
	15	Input	START	START
	16		E-STOP	Emergency stop
	17		COM1	Power source for input signal
CN4	18		COIVIT	
6114	19	Output	Y4	
	20		<u>¥4</u>	
	21		Y5	
	22		<u>Y5</u>	General output*1
	23		Y6	(Y4 to Y7)
	24	Output	Y6	
	25		Y7	
	26		<u>¥7</u>	
	27		ALM	Alarm
	28		ALM	Alaliii
	29		X0	
	30		X1	
	31		X2	
	32	Input	X3	General input*2
	33	IIIput	X4	(X0 to X7)
	34		X5	
	35		X6	
	36		X7	

*1 The following signals can be assigned arbitrarily via program settings. Additionally, the output logic of each signal can be switched. END output, RUN output, MOVE output, HOME-P output, TIM output, MBC output

*2 The following signals can be assigned arbitrarily via program settings. Additionally, the input logic of each signal can be switched. ACL input, PAUSE input, MSTOP input, RESTART input

Connection Diagrams

Current Source Input and Current Sink Output

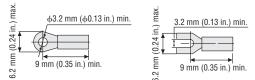
Host Controller	Driver
+24 V A	P24 CN4
	COM1 (17(10))
	<u>COMI</u> (17(18))
	COM1 (CN5)
	N24
	CTADT Input
	E CTOD lasut
	V0 lasut
	Vit lanut
	V2 Input
	V0 lagut
	32
	VE Input
	VG Input
	V7 Input
0 V V	
+24 V △	
	Y0 Output
	Y Y VI Output
॒॑॑ॼॖॖॣॖॖॖॖॖ — ┥ ┌	V1 Output
	V V VI Output
	Y2 Output 6
	// Y2 Output _ ്
	Y3 Output
	X Y3 Output
D =	Y4 Output
	Y5 Output
	V V VE Output
॒॑ॹ॒॑ॖऻ	
	V V VC Output
	Y7 Output
-	X ALM Output
0 V 4	
~~*	ASG Output
	X X ASG Output
	V V DCC Output
~ <u>~</u>	

	N24 CN4
0 V 4	COM1 (17(18))
	COM1 (CN5)
+24 V 🛆	P24
	START Input
	E-STOP Input
	X0 Input
	V1 Input
	V2 Input
	V2 Input
	V4 Input
	VE Input
	X6 Input
	V7 Input
1	
+24 VĄ	Y0 Output
+	
	V1 Output
	X X Y1 Output 5
₽=¶──┥	Y2 Output
	XY2 OutputX
│ ╵└┘[═]╝ ──┥┝─	Y3 Output
┍╦━┼┼	<u> </u>
│ └╱╘ ──┥┝─	V V VI Output
	V5 Output
	V V VE Output
	Y6 Output 23
	XY6 OutputX
│ └ ╧╉═─┥ ┢	
5	<u>Y7 Output</u>
╶┶╧╝┥└	ALM Output
₽₽	
0,,,	ASG Output
	X X ASG Output 11 X X ASG Output 12
	BSG Output
	X X BSG Output
	Ϋ́

Host Controller

⊘Notes on Wiring Current Sink Input and Current Source Output

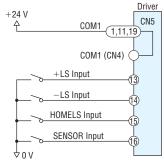
Driver

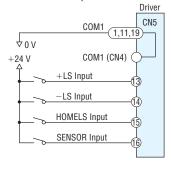

●Use input signals at 24 VDC±10%

•Use output signals at 30 VDC or below and at 4 to 8 mA.

- Use a shielded cable with a wire of a size ranging between AWG24 and AWG22 for the driver signal cable (I/O signals, limit sensors signals), and keep it as short as possible.
- Keep the control input/output signal line at least 300 mm (1 ft.) away from power lines (e.g. lines carrying large current, such as AC lines and motor lines). Also, do not run these lines through the same ducts or pipes as power lines.
- Always use the optional cable for IP65 rated motor (sold separately) for connection between the IP65 rated motor and the driver.
- Use the following cable for the power line:
 - Single-phase 200 to 230 VAC: 3-core cable (AWG18 or thicker) Provide a minimum distance of 300 mm (1 ft.) between the control I/O signal line and power lines (AC lines, motor lines and other large-current circuits).
- Do not guide the control I/O signal line in the same duct as power lines or bundle it with power lines.
- The power cable and control I/O signal cable are not supplied with the package and must be provided separately by the user.

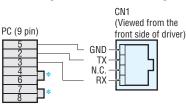
To ground the driver, lead the ground conductor from the protective ground terminal (M4) and connect the ground conductor to a cable of AWG18 or thicker to provide single-point grounding.


◇Recommended Crimp Terminals


Crimp terminals are not provided with the package. They must be furnished separately.

◇Limit Sensor (CN5)

Current Source Input



• Current Sink Input

Connecting the Driver with a Personal Computer (CN1)

Pin Assignments and Connecting

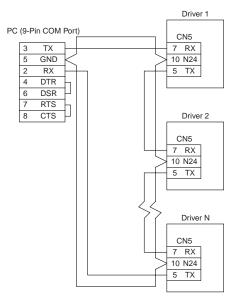
*Short pins 4 and 6 together, as well as pins 7 and 8 together.

Communication Specifications

Item	Description
Electrical characteristics	In conformance with RS-232C.
Transmission method	Start-stop asynchronous method, NRZ (non-return to Zero), full-duplex
Data length	8 bits, 1 stop bit, no parity
Transmission speed	9600 bps
Protocol	TTY (CR+LF)
Connector specification	Modular (4 lines, 4 pins)

Notes:

- Confirm that 24 VDC is supplied to the driver's external power supply input terminals (P24 and N24).
- •Use the RS-232C signal lines over the shortest possible distance. It is recommended that the signal lines be shielded to protect them from noise interference.
- The maximum distance between drivers when using a daisy chain connection should be 15 m (49.2 ft.)


How to Read Specifications and Characteristics

Accessories Stepping Motor

Controllers

Description of Daisy-Chain Connection

Use the RS-232C communication pins (TX, RX and N24) of the sensor connector (CN5) when connecting two or more drivers via a daisy chain (up to 36 drivers).

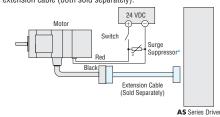
\diamond TX, RX

These communication terminals are used when implementing daisy-chain connections.

Notes:

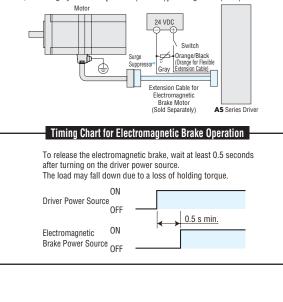
- Confirm that each driver is supplied 24 VDC±10% (P24 and N24) of CN4 from outside for communication.
- Wire the RS-232C signal lines over the shortest possible distance. It is recommended that the signal lines be shielded to protect them from noise interference.
- •The maximum distance between drivers when using a daisy-chain connection should be 15 m (49.2 ft.).
- Do not use the RS-232C communication port (CN1).

Connecting the Electromagnetic Brake to Power Supply

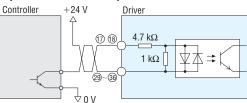

Connect the electromagnetic brake to the power supply using a cable with a conductor cross-sectional area of at least AWG24. The power supply input to the electromagnetic brake is 24 VDC \pm 5% 0.3 A minimum (**AS46**: 0.1 A minimum) and therefore must be independent of the driver's power supply for signal control.

Notes:

- Applying a voltage that exceeds the specifications will cause the electromagnetic brake to generate a great amount of heat, resulting in motor temperature rises and possible damage to the motor. Conversely, if voltage is too low, the electromagnetic brake may not release.
- To protect the switch contacts and prevent noise, always connect the surge suppressor (Included).*
- (*The surge suppressor is included with electromagnetic brake motors.)
- •To prevent noise, use a dedicated power supply for electromagnetic brake.
- Correct polarity (+ and -) must be ensured when connecting the electromagnetic brake lead wire of AS Series to the DC power supply. If polarity is incorrect, the electromagnetic brake will not operate.
- When using as a CE certified part, use a dedicated DC power supply for electromagnetic brake.


(1) **AS46**

The electromagnetic brake wire is linked to the connector on the motor [600 mm (23.6 in.)]. When connecting with the DC power supply, connect the red spiral lead wire to +24 V, and the black lead wire to the ground (GND). Use the extension cable or the flexible extension cable (both sold separately).


(2) AS66, AS69, AS98

The electromagnetic brake wire is linked to the connector on the driver connection side of extension cable for electromagnetic brake motor (sold separately). Be sure to use the accessory (sold separately) extension cable or flexible extension cable. Connect the orange/black spiral lead wire (orange for flexible extension cable)[60 mm (2.36 in.)] to +24 V, and the gray lead wire [60 mm (2.36 in.)] to the ground (GND).

Description of Input Signals (CN4)

◇Input Circuit and Sample Connection

Note:

●Use input signals at 24 VDC±10%.

◇P24 Input, N24 Input

These inputs are for the external power supply required for the RS-232C communication, ASG and BSG outputs. Make sure to use a power supply of at least 24 VDC \pm 10%, 0.05 A.

If the same power supply is going to be used for the RS-232C, ASG, BSG and other external I/O, make sure to use a power supply of at least $24 \text{ VDC} \pm 10\%$, 0.2 A.

♦START Input

This signal starts the program named "STARTUP." OFF \rightarrow ON edge to start "STARTUP" program.

♦ E-STOP Input

This signal is used to forcibly stop the operation.

Set the stopping method using the ESTOPACT command. Additionally, the input logic can be changed using the ESTOPLV command. (The factory setting of this command is normally open.) $OFF \rightarrow ON$ edge to stop operation.

○COM1 Input

This is an external power-source terminal for input signals. This signal is internally connected to terminals COM1 of CN5.

◇X0 to X7 Inputs

The X0 thorough X7 inputs can be used as input ports for general signals. The status of each port can be read using an IN command or INx command.

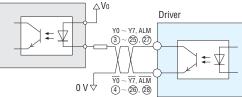
The general signals assignable to the X0 through X7 inputs are listed below. Use a corresponding command to assign signal.

ACL input INACL command PAUSE input..... INPAUSE command

MSTOP input..... INMSTOP command

RESTART input... INRESTART command

◇ACL Input


This signal is used to reset the alarm that has been generated by the driver's protective function.

Input an ACL signal once after removing the cause that has triggered the protective function.

Description of Output Signals (CN4)

Output Circuit and Sample Connection

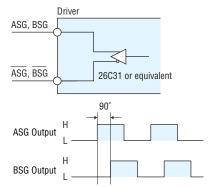
Controller

Note:

•Use output signals at 30 VDC or below and at 4 to 8 mA.

♦ Y0 to Y7 Output

The Y0 through Y7 outputs can be used as output ports for general signals. The status of each port can be read using an OUT command or OUTx command.


The general signals assignable to the Y0 through Y7 outputs are listed below. Use the corresponding command to assign each signal.

ŀ	sted below. Ose the corresponding command
	END output OUTEND command
	RUN output OUTRUN command
	MOVE output OUTMOVE command
	HOME-P output OUTHOMEP command
	TIM output OUTTIM command

MBC output OUTMBC command

◇ASG Output, BSG Output

Line driver output (26C31 or equivalent)

To monitor the motor position, connect these signals to a counter, etc. The pulse resolution is the same as the motor resolution at the time of power-on.

The ASG output and BSG output have a phase difference of 90 degrees electrical.

Pulse output is subject to a maximum delay of 1 ms relative to the motor's motion. Use the ASG output and BSG output to check the stopping position.

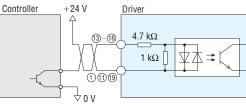
◇ALM Output

This signal is output when an alarm is generated by the driver's protective function.

The reason for triggering of the protective function can be identified through the blink count of the alarm LED, or ALM command. To reset the ALM output, remove the cause of the alarm and then perform one of the following procedures after ensuring safety:

Assign INACL then turn the ACL input to ON.

Enter an ALMCLR command.


•Turn off the AC power, wait at least 10 seconds, then turn it back on.

Features

Product Line

Description of Limit Sensors (CN5)

◇Input Circuit and Sample Connection

Note:

●Use input signals at 24 VDC±10%.

♦COM1 Input

This is a power-source input terminal for limit-sensor signals. The power-source voltage must be 24 VDC $\pm 10\%$

This signal is internally connected to terminals COM1 of CN4.

◇COM2 Input

This is a power-source input terminal for limit-sensor signals. Use it when sharing the input signal power source among two or more drivers.

◇+LS Input, -LS Input

These signals are input from +LS and -LS. The input logic can be changed using the OTLV command. (The factory setting of this command is normally open.) Input logic for the +LS input and -LS input cannot be set separately.

Continuous Operation and Positioning Operation

When a +LS or -LS is detected, the driver's protective function (over travel) is activated. As a result, the ALM output is turned OFF and the motor stops.

Set the stopping method using the OTACT command.

To pull out of +LS or -LS, cancel the protective function by inputting an ACL signal once or by using the ALMCLR command.

Then perform mechanical home seeking routine or operate the motor in the direction opposite that of the limit sensor during continuous operation.

Mechanical Home Seeking Routine

When a +LS or -LS is detected, the motor operates in the direction opposite that of the detected limit.

♦HOMELS Input

This signal is input from HOMELS.

Connect the HOMELS when mechanical home seeking is performed in 3-sensor mode.

When mechanical home seeking is performed in 3-sensor mode, the HOMELS becomes the mechanical home. The input logic can be changed using the HOMELV command. (The factory setting of this command is normally open.)

♦SENSOR Input

This signal is input from SENSOR.

The input logic can be changed using the SENSORLV command. (The factory setting of this command is normally open.)

Mechanical Home Seeking Routine

This input is used when detecting the mechanical home at a specific point on the motor's output shaft or load shaft using a slotted disc, etc. The accuracy of mechanical home hunting increases if this input is used in conjunction with the TIM. signal.

Continuous Operation

The motor can be stopped forcibly upon the detection of SENSOR. Set the stopping method using the SENSORACT command.

Note:

 If the SENSOR input is used in mechanical home hunting, it cannot be used during continuous operation.

Controllers

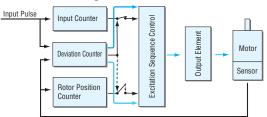
List of Motor and Driver Combinations

Model names for motor and driver combinations are shown below.

Туре		Pulse Input Package			ilt-In Controller Package		
Type	Package Model	Motor Model	Driver Model	Package Model	Motor Model	Driver Mod	
	AS46 A	ASM46 A	ASD13A-A	AS46 AP	ASM46□A	ASD13A-AF	
	AS66 AE	ASM66 AE	ASD24A-A	AS66 AEP	ASM66 AE	ASD24A-A	
Standard Typ	e AS69 AE	ASM69 AE	ASD30D-A	AS69 AEP	ASM69 AE	ASD30D-AF	
,	AS98 AE	ASM98 AE	ASD30A-A	AS98 AEP	ASM98 AE	ASD30A-A	
	AS911AAE	ASM911AAE	ASD30E-A	AS911AAEP	ASM911AAE	ASD30E-AF	
	AS66AAT	ASM66AAT	ASD24A-A	AS66AATP	ASM66AAT	ASD24A-A	
Standard Typ	e AS69AAT	ASM69AAT	ASD30D-A	AS69AATP	ASM69AAT	ASD30D-A	
IP65 Rated Motor	AS98AAT	ASM98AAT	ASD30A-A	AS98AATP	ASM98AAT	ASD30A-A	
	AS911AAT	ASM911AAT	ASD30E-A	AS911AATP	ASM911AAT	ASD30E-AF	
	A\$46_A-T3.6	ASM46_A-T3.6	1.02002.7.1	AS46 AP-T3.6	ASM46 A-T3.6	1.0200274	
	AS46 A-T7.2	ASM46 A-T7.2	ASD13B-A		ASM46 A-T7.2	ASD13B-A	
	AS46 A-T10	ASM46_A-T10		AS46 AP-T10	ASM46_A-T10		
	A\$46_A-T20	ASM46 A-T20		AS46 AP-T20	ASM46 A-T20		
	AS46 A-T30	ASM46_A-T30	ASD13C-A	AS46 AP-T30	ASM46 A-T30	ASD13C-A	
	AS66_AE-T3.6	ASM40_A 130		AS66 AEP-T3.6	ASM66 AE-T3.6		
	AS66 AE-17.2	ASM66_AE-T7.2	ASD24B-A	AS66 AEP-17.2	ASM66 AE-T7.2	ASD24B-AF	
TH Geared Ty			A3DZ4B-A	AS66 AEP-17.2			
In Geared I		ASM66 AE-T10			ASM66 AE-T10		
	AS66 AE-T20	ASM66 AE-T20	ASD24C-A	AS66 AEP-T20	ASM66 AE-T20	ASD24C-A	
	AS66 AE-T30	ASM66 AE-T30		AS66 AEP-T30	ASM66 AE-T30		
	AS98 AE-T3.6	ASM98 AE-T3.6		AS98 AEP-T3.6	ASM98 AE-T3.6		
	AS98 AE-T7.2	ASM98 AE-T7.2	ASD30A-A	AS98 AEP-T7.2	ASM98 AE-T7.2	ASD30A-A	
	AS98 AE-T10	ASM98 AE-T10		AS98 AEP-T10	ASM98 AE-T10		
	AS98 AE-T20	ASM98 AE-T20	ASD30C-A	AS98 AEP-T20	ASM98 AE-T20	ASD30C-A	
	AS98 AE-T30	ASM98 AE-T30		AS98 AEP-T30	ASM98 AE-T30		
	AS46 A-N7.2	ASM46 A-N7.2	ASD13A-A	AS46 AP-N7.2	ASM46 A-N7.2	ASD13A-AP	
	AS46 A-N10	ASM46_A-N10		AS46 AP-N10	ASM46_A-N10		
	AS66 AE-N5	ASM66 AE-N5		AS66 AEP-N5	ASM66 AE-N5		
	AS66 AE-N7.2	ASM66 AE-N7.2	ASD24A-A	AS66 AEP-N7.2	ASM66 AE-N7.2	ASD24A-AP	
	AS66 AE-N10	ASM66 AE-N10		AS66 AEP-N10	ASM66 AE-N10		
	AS66 AE-N25	ASM66 AE-N25	ASD24B-A	AS66 AEP-N25	ASM66 AE-N25	ASD24B-AF	
PN Geared T	AS66 AE-N36	ASM66 AE-N36	ASD24C-A	AS66 AEP-N36	ASM66 AE-N36		
PN Gealeu I	AS66 AE-N50	ASM66 AE-N50	ASDZ4C-A	AS66 AEP-N50	ASM66 AE-N50	ASD24C-A	
	AS98 AE-N5	ASM98 AE-N5		AS98 AEP-N5	ASM98 AE-N5		
	AS98 AE-N7.2	ASM98 AE-N7.2		AS98 AEP-N7.2	ASM98 AE-N7.2		
	AS98 AE-N10	ASM98 AE-N10	ASD30A-A	AS98 AEP-N10	ASM98 AE-N10	ASD30A-AP	
	AS98 AE-N25	ASM98 AE-N25		AS98 AEP-N25	ASM98 AE-N25		
	AS98 AE-N36	ASM98 AE-N36	_	AS98 AEP-N36	ASM98 AE-N36		
	AS98 AE-N50	ASM98 AE-N50	ASD30B-A	AS98 AEP-N50	ASM98 AE-N50	ASD30B-AF	
	AS46 A2-H50	ASM46 A2-H50		AS46 AP2-H50	ASM46 A2-H50		
	AS46 A2-H100	ASM46 A2-H100	ASD13A-A	AS46 AP2-H100	ASM46 A2-H100	- ASD13A-A	
Harmonic	AS66 AE-H50	ASM66 AE-H50	ASD24B-A	AS66 AEP-H50	ASM66 AE-H50	ASD24B-A	
Geared Type	AS66 AE-H100	ASM66 AE-H100	ASD24C-A	AS66 AEP-H100	ASM66 AE-H100	ASD24C-A	
5,00	AS98 AE-H50	ASM98 AE-H50		AS98 AEP-H50	ASM98 AE-H50		
	AS98 AE-H100	ASM98 AE-H100	ASD30B-A	AS98 AEP-H100	ASM98 AE-H100	– ASD30B-AF	
	AS66 CE	ASM66 CE	ASD12A-C	AS66 CEP	ASM66 CE	ASD12A-CI	
		ASM69 CE	ASD16D-C	AS69 CEP	ASM69 CE	ASD16D-CI	
Standard Typ	e AS98 CE	ASM98 CE	ASD16A-C	AS98 CEP	ASM98 CE	ASD16A-C	
	AS911ACE	ASM911ACE	ASD20A-C	AS911ACEP	ASM911ACE	ASD20A-C	
	AS66ACT	ASM66ACT	ASD20A-C	AS66ACTP	ASM66ACT	ASD120A-C	
Standard Typ	e AS69ACT	ASM69ACT	ASD12A-C	AS69ACTP	ASM69ACT	ASD12A-CI	
IP65 Rated							
Motor	AS98ACT	ASM98ACT	ASD16A-C	AS98ACTP	ASM98ACT	ASD16A-CI	
		ASM911ACT	ASD20A-C		ASM911ACT	ASD20A-CI	
	AS66 CE-T3.6	ASM66 CE-T3.6		AS66 CEP-T3.6	ASM66 CE-T3.6		
	AS66 CE-T7.2	ASM66 CE-T7.2	ASD12B-C	AS66 CEP-T7.2	ASM66 CE-T7.2	ASD12B-CF	
TH Geared Ty		ASM66 CE-T10		AS66CEP-T10	ASM66 CE-T10		
	AS66 CE-T20	ASM66 CE-T20	ASD12C-C	AS66 CEP-T20	ASM66 CE-T20	ASD12C-CF	
	AS66 CE-T30	ASM66 CE-T30	1.001200	AS66 CEP-T30	ASM66 CE-T30	1,000120 01	

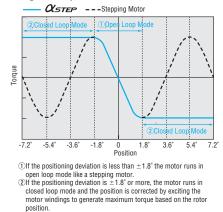
•Enter **A** (standard) or **M** (electromagnetic brake) in the box (\Box) within the model name.

upply	Turne		Pulse Input Package		Bu	ilt-In Controller Package		
ge	Туре	Package Model	Motor Model	Driver Model	Package Model	Motor Model	Driver Model	
-		AS98 CE-T3.6	ASM98 CE-T3.6		AS98 CEP-T3.6	ASM98 CE-T3.6		
		AS98 CE-T7.2	ASM98 CE-T7.2	ASD16A-C	AS98 CEP-T7.2	ASM98 CE-T7.2	ASD16A-CP	
	TH Geared Type	AS98 CE-T10	ASM98 CE-T10		AS98 CEP-T10	ASM98 CE-T10		
	iii adaloa ijpo	AS98 CE-T20	ASM98 CE-T20		AS98 CEP-T20	ASM98 CE-T20		
		AS98 CE-T30	ASM98 CE-T30	– ASD16C-C	AS98 CEP-T30	ASM98 CE-T30	- ASD16C-CP	
0111916-1 11836 200-200 VAO 111941		AS66 CE-N5	ASM66 CE-N5		AS66 CEP-N5	ASM66 CE-N5		
		AS66 CE-N7.2	ASM66 CE-N7.2	ASD12A-C	AS66 CEP-N7.2	ASM66 CE-N7.2	ASD12A-CP	
		AS66 CE-N10	ASM66 CE-N10		AS66 CEP-N10	ASM66 CE-N10		
		AS66 CE-N25	ASM66 CE-N25	ASD12B-C	AS66 CEP-N25	ASM66 CE-N25	ASD12B-CP	
		AS66 CE-N36	ASM66 CE-N36		AS66 CEP-N36	ASM66 CE-N36		
		AS66 CE-N50	ASM66 CE-N50	ASD12C-C	AS66 CEP-N50	ASM66 CE-N50	ASD12C-CP	
	PN Geared Type	AS98 CE-N5	ASM98 CE-N5		AS98 CEP-N5	ASM98 CE-N5		
		AS98 CE-N7.2	ASM98 CE-N7.2		AS98 CEP-N7.2	ASM98 CE-N7.2	-	
		AS98 CE-N10	ASM98 CE-N10	ASD16A-C	AS98 CEP-N10	ASM98 CE-N10	ASD16A-CP	
		AS98 CE-N25	ASM98 CE-N25		AS98 CEP-N25	ASM98 CE-N25		
		AS98 CE-N36	ASM98 CE-N36	_	AS98 CEP-N36	ASM98 CE-N36	-	
		AS98 CE-N50	ASM98 CE-N50	ASD16B-C	AS98 CEP-N50	ASM98 CE-N50	ASD16B-CP	
t		AS66 CE-H50	ASM66 CE-H50	ASD12B-C	AS66 CEP-H50	ASM66 CE-H50	ASD12B-CP	
	Harmonic	AS66 CE-H100	ASM66 CE-H100	ASD12C-C	AS66 CEP-H100	ASM66 CE-H100	ASD12C-CP	
	Geared Type	AS98 CE-H50	ASM98 CE-H50		AS98 CEP-H50	ASM98 CE-H50		
	510	AS98 CE-H100	ASM98 CE-H100	ASD16B-C	AS98 CEP-H100	ASM98 CE-H100	ASD16B-CP	
	Standard Type	AS66 SE	ASM66 CE	ASD12A-S	AS66 SEP	ASM66 CE	ASD12A-SP	
		AS69 SE	ASM69 CE	ASD16D-S	AS69 SEP	ASM69 CE	ASD16D-SP	
		AS98 SE	ASM98 CE	ASD16A-S	AS98 SEP	ASM98 CE	ASD16A-SP	
		AS911ASE	ASM911ACE	ASD20A-S	AS911ASEP	ASM911ACE	ASD20A-SP	
t		AS66AST	ASM66ACT	ASD12A-S	AS66ASTP	ASM66ACT	ASD12A-SP	
	Standard Type	AS69AST	ASM69ACT	ASD16D-S	AS69ASTP	ASM69ACT	ASD16D-SP	
	IP65 Rated	AS98AST	ASM98ACT	ASD16A-S	AS98ASTP	ASM98ACT	ASD16A-SP	
	Motor	AS911AST	ASM911ACT	ASD20A-S	AS911ASTP	ASM911ACT	ASD20A-SP	
t		AS66 SE-T3.6	ASM66 CE-T3.6		AS66 SEP-T3.6	ASM66 CE-T3.6		
		AS66 SE-T7.2	ASM66 CE-T7.2	ASD12B-S	AS66 SEP-T7.2	ASM66 CE-T7.2	ASD12B-SP	
		AS66 SE-T10	ASM66 CE-T10		AS66 SEP-T10	ASM66 CE-T10	-	
		AS66 SE-T20	ASM66 CE-T20	4001000	AS66 SEP-T20	ASM66 CE-T20		
		AS66 SE-T30	ASM66 CE-T30	ASD12C-S	AS66 SEP-T30	ASM66 CE-T30	ASD12C-SP	
	TH Geared Type	AS98 SE-T3.6	ASM98DCE-T3.6		AS98 SEP-T3.6	ASM98 CE-T3.6		
		AS98 SE-T7.2	ASM98 CE-T7.2	ASD16A-S	AS98 SEP-T7.2	ASM98 CE-T7.2	ASD16A-SP	
		AS98 SE-T10	ASM98 CE-T10		AS98 SEP-T10	ASM98CE-T10		
		AS98 SE-T20	ASM98 CE-T20		AS98 SEP-T20	ASM98 CE-T20		
		AS98 SE-T30	ASM98CE-T30	ASD16C-S	AS98 SEP-T30	ASM98 CE-T30	ASD16C-SP	
Ī		AS66 SE-N5	ASM66 CE-N5		AS66 SEP-N5	ASM66 CE-N5		
		AS66 SE-N7.2	ASM66 CE-N7.2	ASD12A-S	AS66 SEP-N7.2	ASM66 CE-N7.2	ASD12A-SP	
		AS66 SE-N10	ASM66 CE-N10		AS66 SEP-N10	ASM66 CE-N10		
		AS66 SE-N25	ASM66 CE-N25	ASD12B-S	AS66 SEP-N25	ASM66 CE-N25	ASD12B-SP	
		AS66 SE-N36	ASM66 CE-N36	ASD12C-S	AS66 SEP-N36	ASM66 CE-N36	ASD12C-SP	
	PN Geared Type	AS66 SE-N50	ASM66 CE-N50	AJD12C-J	AS66 SEP-N50	ASM66 CE-N50	ASDIZC-SP	
	Fra Gearen Type	AS98 SE-N5	ASM98 CE-N5		AS98 SEP-N5	ASM98 CE-N5		
		AS98 SE-N7.2	ASM98 CE-N7.2		AS98 SEP-N7.2	ASM98 CE-N7.2	1	
		AS98 SE-N10	ASM98 CE-N10	ASD16A-S	AS98 SEP-N10	ASM98 CE-N10	ASD16A-SP	
		AS98 SE-N25	ASM98 CE-N25		AS98 SEP-N25	ASM98 CE-N25		
		AS98 SE-N36	ASM98DCE-N36		AS98 SEP-N36	ASM98 CE-N36		
		AS98 SE-N50	ASM98 CE-N50	ASD16B-S	AS98 SEP-N50	ASM98 CE-N50	ASD16B-SP	
		AS66 SE-H50	ASM66 CE-H50	ASD12B-S	AS66 SEP-H50	ASM66 CE-H50	ASD12B-SP	
	Harmonic	AS66 SE-H100	ASM66 CE-H100	ASD12C-S	AS66 SEP-H100	ASM66 CE-H100	ASD12C-SP	
	Geared Type	AS98 SE-H50	ASM98 CE-H50	ASD16B-S	AS98 SEP-H50	ASM98 CE-H50	ASD16B-SP	
	Gourou Type	AS98 SE-H100	ASM98 CE-H100		AS98 SEP-H100			


 \blacksquare Enter A (standard) or M (electromagnetic brake) in the box ([]) within the model name.

(RoHS) RoHS-Compliant Closed Loop Stepping Motor and Driver Package OCSTEP ASC Series

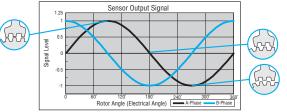
The \mathcal{A}_{STEP} is an innovative stepping motor unit that adopts a closed-loop control to eliminate misstep. In the \mathcal{A}_{STEP} , the user friendliness of a stepping motor is combined with a range of new functions for improved reliability of your equipment.



○ 𝒴 STEP Control Diagram

Normal (Positioning Deviation is less than = 1.87) Motor runs in open loop mode like a stepping motor. If Motor Missteps (Positioning Deviation is ±1.8° or more) Control sitches to closed loop mode to prevent loss of synchronism

$\Diamond \mathcal{A}_{STEP}$ Angle-Torque Characteristics


◇The Newly Developed Sensor to Detect Rotor's Position The newly developed *Xstep* rotor position detection sensor uses the change in inductance caused by change in the distance between the stator teeth and the teeth on the sensor rotor to detect rotor position.

Features

This structure can be made small and thin, so the overall size of the motor can be reduced.

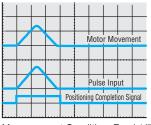
High resolution

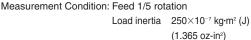
•This structure does not use electronic parts, so it is not affected by heat or vibration.

Features

Thanks to Closed Loop Control, There is No Loss of Synchronism $\mathcal{O}_{\text{STEP}}$ does not lose synchronism even when subjected to abrupt load fluctuation or acceleration.

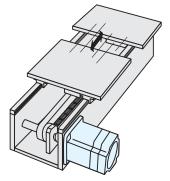
A newly developed rotor position detection sensor constantly monitors the motor movement. If synchronism is about to be lost, closed loop control is used, so there is no need to worry about loss of steps. When the successive overload is given, α_{step} outputs an alarm signal. The reliability of α_{step} is as high as that of a servo motor.


CSTEP is designed as a "package" consisting of a motor and a driver.



Features

High Response


Like conventional stepping motors, $\mathcal{Q}_{\textit{STEP}}$ operates in synchronism with command pulses. This makes possible short stroke positioning in a short time.

No Gain Tuning

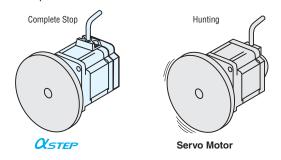
Gain tuning for servo motors is critical, troublesome and time-consuming. Since the \mathcal{A} -step operates like a stepping motor, there are no gain tuning requirements. Low rigidity applications, such as a belt and pulley system, are ideal for \mathcal{A} -step.

The *Q*_{STEP} Complies with International Safety Standards

The **ASC** Series is recognized with the UL/CSA standards and conforms to EN standard. The CE marking certifies compliance with the EMC Directives.

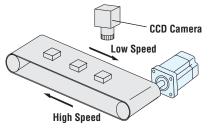
Safety Standards and CE Marking

Model	Standards	Certification Body	Standards File No.	CE Marking
Motor	UL 60950 CSA C22.2 No.60950	UL	E208200	
Driver	UL 508C CSA C22.2 No.14	UL	E171462	EMC Directives
Driver	UL 1950 CSA C22.2 No.950	UL	E208200	


When the system is approved under various safety standards, the model names in the motor and driver nameplates are the approved model names.

List of Motor and Driver Combinations → Page 72

•The EMC value changes according to the wiring and layout. Therefore, the final EMC level must be checked with the motor/driver incorporated in the user's equipment.


No Hunting

Since α *step* is a stepping motor, it has no hunting problem. Therefore, when it stops, its position is completely stable and does not fluctuate. α *step* is ideal for applications in which vibration would be a problem.

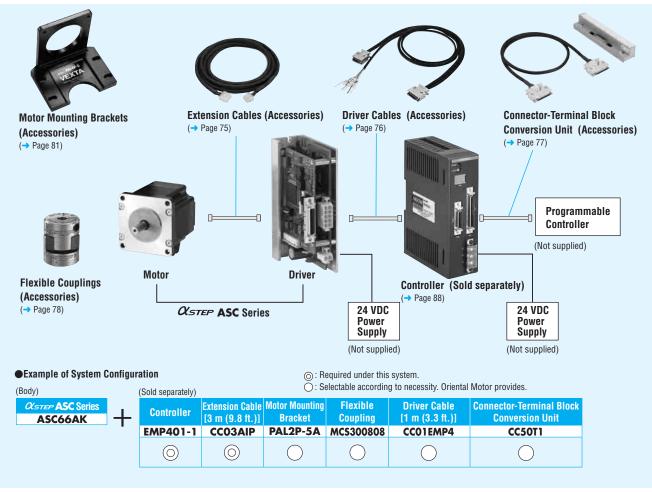
Low Vibration at Low Speed

The driver employs advanced technology that produces smoothness comparable to a microstepping driver. Its vibration level is incredibly low, even when operating in the low speed range. When frequent changes from low to high (or vice versa) speed operations are required, the use of the Resolution Select Function solves the problem. \mathcal{O}_{STEP} provides resolution as low as 0.036° per step without any damping mechanism or other mechanical device.

 α_{STEP} is well-suited to applications where smooth movement or stability is required, such as where a camera is used to monitor the quality of a product.

Motor/Driver Connection with a Single Cable

 \mathcal{X}_{STEP} requires only one cable for connection between the motor and the driver. Wiring is much simpler compared with conventional servo motors requiring two cables, one for motor and the other for encoder. The cable can be extended to a maximum of 10 m (32.8 ft.)(including flexible extension cable), so the motor and the driver can be installed in locations far apart.


RoHS RoHS-Compliant

The \mathcal{Q}_{STEP} conforms to the RoHS Directive that prohibits the use of six chemical substances including lead and cadmium.

RoHS (Restriction of Hazardous Substances) Directive: Directive on restriction of the use of certain hazardous substances in electrical and electronic equipment (2002/95/EC). The RoHS Directive prohibits the use of six chemical substances in electrical and electronic products sold in the E.U. member countries on or after July 1, 2006. The six controlled substances are: lead, hexavalent chromium, cadmium, mercury and two specific brominated flame-retardants (PBB and PBDE).

System Configuration

An example of a system configuration with the EMP400 Series controller.

The system configuration shown above is an example. Other combinations are available.

Extension Cables

Extension cables are not included with *Aster* products. When using the *Aster* stepping motor and driver more than 0.4 m (1.31 ft.) apart from each other, use an extension cable (sold separately).

●Electromagnetic brake motor models [except motor frame size 42 mm (1.65 in.)] must use an extension cable for electromagnetic brake motor (sold separately). For electromagnetic brake motor with motor frame size □42 mm (□1.65 in.), use an extension cable for standard motor.

→ Page 75

Product Number Code

ASC	6	6	A	Κ	-	T	3.6
1	2	3	4	(5)		6	7

1	Series ASC: ASC Series							
2	Motor Frame Size 3 : 28 mm (1.10 in.) 4 : 42 mm (1.65 in.) 6 : 60 mm (2.36 in.)							
3	Motor Case Length							
(4)	Electromagnetic Brake A: Standard (Single Shaft) M: Electromagnetic Brake Type							
(5)	Power Supply Voltage K: 24 VDC							
(6)	Gearhead Type Blank : Standard Type T : TH Geared Type							
0	N: PN Geared Type H: Harmonic Geared Type							
$\overline{\mathcal{O}}$	Gear Ratio							

Product Line

The product names below are all for single shaft types, but there are also double shaft models available for all products except for those with electromagnetic brakes. Contact the nearest Oriental Motor office for further information on the double shaft models.

♦Standard Type

Power Supply Voltage	Model (Single Shaft)
	ASC34AK
24 VDC	ASC36AK
24 VDC	ASC46AK
	ASC66AK

○TH Geared Type

Power Supply Voltage	Model (Single Shaft)
	ASC34AK-T7.2
	ASC34AK-T10
	ASC34AK-T20
	ASC34AK-T30
	ASC46AK-T3.6
	ASC46AK-T7.2
	ASC46AK-T10
24 VDC	ASC46AK-T20
	ASC46AK-T30
	ASC66AK-T3.6
	ASC66AK-T7.2
	ASC66AK-T10
	ASC66AK-T20
	ASC66AK-T30

Standard Type with Electromagnetic Brake

Power Supply Voltage	Model (Single Shaft)
24 VDC	ASC46MK ASC66MK

TH Geared Type with Electromagnetic Brake

	•
Power Supply Voltage	Model (Single Shaft)
24 VDC	ASC46MK-T3.6 ASC46MK-T7.2 ASC46MK-T10 ASC46MK-T20 ASC46MK-T30 ASC66MK-T3.6 ASC66MK-T7.2 ASC66MK-T7.2 ASC66MK-T10 ASC66MK-T20 ASC66MK-T30

◇PN Geared Type

Power Supply Voltage	Model (Single Shaft)
	ASC34AK-N5
	ASC34AK-N7.2
	ASC34AK-N10
	ASC46AK-N7.2
	ASC46AK-N10
24 VDC	ASC66AK-N5
	ASC66AK-N7.2
	ASC66AK-N10
	ASC66AK-N25
	ASC66AK-N36
	ASC66AK-N50

⊘Harmonic Geared Type

Power Supply Voltage	Model (Single Shaft)		
	ASC34AK-H50		
	ASC34AK-H100		
041/00	ASC46AK-H50		
24 VDC	ASC46AK-H100		
	ASC66AK-H50		
	ASC66AK-H100		

PN Geared Type with Electromagnetic Brake

Power Supply Voltage	Model (Single Shaft)		
	ASC46MK-N7.2		
	ASC46MK-N10		
	ASC66MK-N5		
24 VDC	ASC66MK-N7.2		
	ASC66MK-N10		
	ASC66MK-N25		
	ASC66MK-N36		
	ASC66MK-N50		

OHarmonic Geared Type with Electromagnetic Brake

	71
Power Supply Voltage	Model (Single Shaft)
	ASC46MK-H50
	ASC46MK-H100
24 VDC	ASC66MK-H50
	ASC66MK-H100

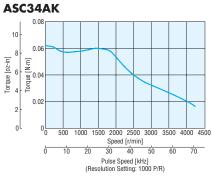
List of Motor and

Standard Type Motor Frame Size 28 mm (1.10 in.), 42 mm (1.65 in.), 60 mm (2.36 in.)

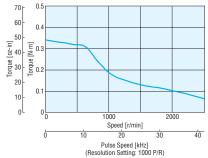
Specifications (RoHS)

ASC34AK ASC36AK ASC46AK ASC66AK Standard Model Electromagnetic Brake ASC46MK ASC66MK Maximum Holding Torque N·m (oz-in) 0.055 (7.8) 0.12 (17) 0.3 (42) 1 (142) Rotor Inertia J: kg·m² (oz-in²) 11×10⁻⁷ (0.06) 27×10⁻⁷ (0.148) 68×10⁻⁷ (0.37) [83×10⁻⁷ (0.45)]* 405×10⁻⁷ (2.2) [564×10⁻⁷ (3.1)] Resolution Setting: 1000 P/R 0.36°/Pulse Resolution* Voltage 24 VDC±10% Power Source Maximum Input Current A 3.7 1 1.1 1.7 Туре Active when power is off Electromagnetic Power Supply Input 24 VDC±5% 2 Brake* Power Consumption W 6 _ _ Excitation Current A 0.08 0.25 Static Friction Torque N·m (oz-in) 0.15 (21) 0.6 (85) 0.22 (0.48) Motor kg (lb.) 0.15 (0.33) 0.5 (1.1) [0.6 (1.3)] 0.85 (1.9)[1.1 (2.4)] Mass Driver 0.25 (0.55) kg (lb.) 3 Motor 1 2 Dimension No. Driver 13

How to Read Specifications Table → Page 73

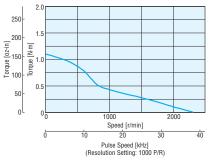

*1 The values inside the brackets [] represent the specification for the electromagnetic brake type.

*2 The resolution can be set to any one of 500 P/R, 1000 P/R, 5000 P/R, or 10000 P/R with the resolution select switch or resolution select switching signals. Resolution Select Switch → Page 68


*3 The electromagnetic brakes are for holding the position when the power is off. They cannot be used for complicated braking. Also, a separate 24 VDC±5%, 0.3 A minimum (ASC46: 0.1 A minimum) power supply is required for the electromagnetic brakes.

How to Read Speed-Torque Characteristics -> Page 73

Speed – Torque Characteristics



ASC46AK/ASC46MK

ASC36AK 0.1 20 0.1 Torque [oz-in] 10 orque [N·m] 0.04 5 ol 0 1000 1500 2000 2500 3000 3500 4000 4500 500 Speed [r/min] 10 50 60 70 ŏ 20 30 40 Pulse Speed [kHz] (Resolution Setting: 1000 P/R)

ASC66AK/ASC66MK

Notes:

Pay attention to heat dissipation from motor and driver. In particular, remember that the motor will produce a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor case under 100°C (212°F). [Under 75°C (167°F) is required to comply with UL or CSA standards.]

•When using the motor with the dedicated driver, the driver's automatic current cutback at motor standstill function reduces maximum holding torque by approximately 50%.

1

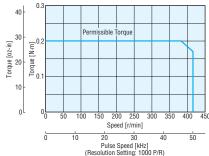
TH Geared Type Motor Frame Size 28 mm (1.10 in.)

Specifications (RoHS)

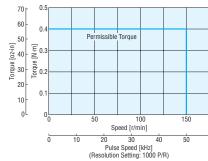
Model	Standa	rd	ASC34AK-T7.2	ASC34AK-T10	ASC34AK-T20	ASC34AK-T30		
Maximum Holdin	ig Torque	N∙m (oz-in)	0.2 (28)	0.3 (42)	0.4 (56)	0.5 (71)		
Rotor Inertia	J: I	kg∙m² (oz-in²)	11×10 ⁻⁷ (0.06)					
Backlash	arc min	ute (degrees)		60	(1°)			
Permissible Spee	ed Range	r/min	0~416	0~300	0~150	0~100		
Gear Ratio			7.2:1	10:1	20:1	30:1		
Resolution*	Resolution Sett	ing: 1000 P/R	0.05°/Pulse	0.036°/Pulse	0.018°/Pulse	0.012°/Pulse		
Permissible Torque N·m (oz-in)			0.2 (28)	0.3 (42)	0.4 (56)	0.5 (71)		
Power	Voltage		24 VDC±10%					
Source Maximum Input Current A			1					
Mass	Motor	kg (lb.)	0.21 (0.46)					
IVIASS	Driver	kg (lb.)	0.25 (0.55)					
Dimension No.	Motor		4					
Dimension No.	Driver		13					

How to Read Specifications Table → Page 73

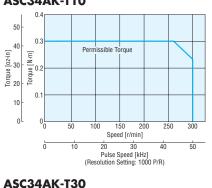
*The resolution can be set to any one of 500 P/R, 1000 P/R, 5000 P/R, or 10000 P/R with the resolution select switch or resolution select switching signals.

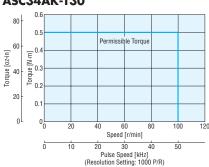

Resolution Select Switch → Page 68

Note:


Direction of rotation of the motor and that of the gear output shaft are the same for unit type with reduction ratio 20:1 and 30:1. It is opposite for 7.2:1 and 10:1 ratio type.

Speed – Torque Characteristics


ASC34AK-T7.2



ASC34AK-T20

How to Read Speed-Torque Characteristics -> Page 73 ASC34AK-T10

Notes:

Pay attention to heat dissipation from motor and driver. In particular, remember that the motor will produce a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor case under 100°C (212°F). [Under 75°C (167°F) is required to comply with UL or CSA standards.]

When using the motor with the dedicated driver, the driver's automatic current cutback at motor standstill function reduces maximum holding torque by approximately 50%.

TH Geared Type Motor Frame Size 42 mm (1.65 in.)

Specifications (RoHS)

Madal	Standard	ASC46AK-T3.6	ASC46AK-T7.2	ASC46AK-T10	ASC46AK-T20	ASC46AK-T30	
Model –	Electromagnetic Brake	ASC46MK-T3.6	ASC46MK-T7.2	ASC46MK-T10	ASC46MK-T20	ASC46MK-T30	
Maximum Hole	ding Torque N·m (Ib-in)	0.35 (3)	0.7 (6.1)	1 (8.8)	1.5 (13.2)	
Rotor Inertia	J: kg⋅m² (oz-in²)		68>	×10 ⁻⁷ (0.37) [83×10 ⁻⁷ (0.45	5)]*1		
Backlash	arc minute (degrees)	45 (0.75°)	45 (0.75°) 25 (0.417°)			0.25°)	
Permissible Sp	beed Range r/min	0~500	0~250	0~180	0~90	0~60	
Gear Ratio		3.6:1	7.2:1	10:1	20:1	30:1	
Resolution*2	Resolution Setting: 1000 P/R	0.1°/Pulse	0.05°/Pulse	0.036°/Pulse	0.018°/Pulse	0.012°/Pulse	
Permissible Torque N·m (lb-in)		0.35 (3)	0.7 (6.1)	1 (8.8)	1.5 (13.2)		
Power	Voltage		24 VDC±10%				
Source	Maximum Input Current A			1.7			
	Туре	Active when power is off					
Electromagnet	ic Power Supply Input	24 VDC±5%					
Brake*3	Power Consumption W			2			
	Excitation Current A			0.08			
5	Static Friction Torque N⋅m (Ib-in)	0.17 (1.5)	0.35 (3)	0.5 (4.4)	0.75	(6.6)	
Mass	Motor kg (lb.)			0.65 (1.4) [0.75 (1.7)]*1			
111035	Driver kg (lb.)						
Dimension No.	Motor	5					
	Driver	13					

How to Read Specifications Table → Page 73

*1 The values inside the brackets [] represent the specification for the electromagnetic brake type.

*2 The resolution can be set to any one of 500 P/R, 1000 P/R, 5000 P/R, or 10000 P/R with the resolution select switch or resolution select switching signals.

1.0

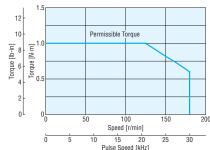
0.8

Resolution Select Switch → Page 68

*3 The electromagnetic brakes are for holding the position when the power is off. They cannot be used for complicated braking. Also, a separate 24 VDC±5%, 0.1 A minimum power supply is required for the electromagnetic brakes.

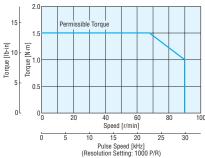
Note:

• Direction of rotation of the motor and that of the gear output shaft are the same for unit type with reduction ratio 3.6:1, 7.2:1 and 10:1. It is opposite for 20:1 and 30:1 ratio type.

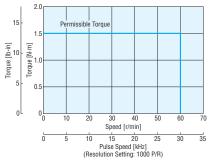

■Speed – Torque Characteristics How to Read Speed-Torque Characteristics → Page 73 ASC46AK-T3.6/ASC46MK-T3.6 ASC46AK-T7.2/ASC46MK-T7.2

0.5 0.4 Permissible Torque Torque [lb-in] Torque [N·m] 2.0 0. 0 500 600 100 400 Speed [r/min] ň 20 30 35 10 15 20 25 Pulse Speed [kHz] (Resolution Setting: 1000 P/R)

Image: Constraint of the second sec


Permissible Torque

ASC46AK-T10/ASC46MK-T10



Pulse Speed [kHz] (Resolution Setting: 1000 P/R)

ASC46AK-T20/ASC46MK-T20

ASC46AK-T30/ASC46MK-T30

Notes:

Pay attention to heat dissipation from motor and driver. In particular, remember that the motor will produce a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor case under 100°C (212°F). [Under 75°C (167°F) is required to comply with UL or CSA standards.]

TH Geared Type Motor Frame Size 60 mm (2.36 in.)

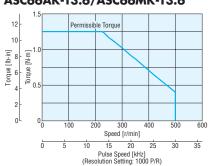
Specifications (RoHS)

Model	Standard		ASC66AK-T3.6	ASC66AK-T7.2	ASC66AK-T10	ASC66AK-T20	ASC66AK-T30		
	Electromagnetic Brake			ASC66MK-T3.6	ASC66MK-T7.2	ASC66MK-T10	ASC66MK-T20	ASC66MK-T30	
Maximum Hold	ding Torqu	e	N⋅m (lb-in)	1.25 (11)	2.5 (22)	3 (26)	3.5 (30)	4 (35)	
Rotor Inertia		J: kç	g∙m² (oz-in²)		405×10 ⁻⁷ (2.2) [564×10 ⁻⁷ (3.1)]*1				
Backlash		arc minu	ite (degrees)	35 (0.584°) 15 (0.25°)			10 (0	.167°)	
Permissible Sp	beed Range)	r/min	0~500	0~250	0~180	0~90	0~60	
Gear Ratio				3.6:1	7.2:1	10:1	20:1	30:1	
Resolution*2	Resol	ution Setting: ⁻	1000 P/R	0.1°/Pulse	0.05°/Pulse	0.036°/Pulse	0.018°/Pulse	0.012°/Pulse	
Permissible Torque N·m (Ib-in)		1.25 (11)	2.5 (22)	3 (26)	3.5 (30)	4 (35)			
Power	Voltage			24 VDC±10%					
Source	Maximum Input Current A			3.7					
		Гуре		Active when power is off					
Electromagnet	tic Power Supply Input			24 VDC±5%					
Brake*3	Ī	Power Consum	nption W		6				
	Excitation Current A				0.25				
	Static Fr	iction Torque	N⋅m (lb-in)	0.62 (5.4)	1.25 (11)	1.5 (13.2)	1.75 (15.4)	2 (17.7)	
Mass	Motor kg (lb.)		1.25 (2.8) [1.5 (3.3)]*1						
IVId55	Driver kg (lb.)		0.25 (0.55)						
Dimension No.	Motor		6						
DIITIENSIOIT NO.	Driver			13					

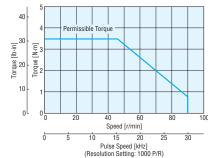
How to Read Specifications Table → Page 73

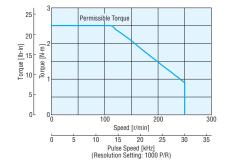
*1 The values inside the brackets [] represent the specification for the electromagnetic brake type.

*2 The resolution can be set to any one of 500 P/R, 1000 P/R, 5000 P/R, or 10000 P/R with the resolution select switch or resolution select switching signals.

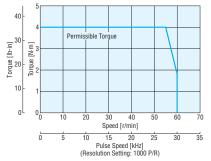

Resolution Select Switch -> Page 68

*3 The electromagnetic brakes are for holding the position when the power is off. They cannot be used for complicated braking. Also, a separate 24 VDC±5%, 0.3 A minimum power supply is required for the electromagnetic brakes.

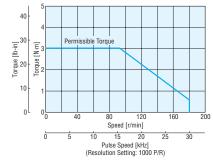

Note:


Direction of rotation of the motor and that of the gear output shaft are the same for unit type with reduction ratio 3.6:1, 7.2:1 and 10:1. It is opposite for 20:1 and 30:1 ratio type.

■Speed – Torque Characteristics How to Read Speed-Torque Characteristics → Page 73 ASC66AK-T3.6/ASC66MK-T3.6 ASC66AK-T7.2/ASC66MK-T7.2



ASC66AK-T20/ASC66MK-T20



ASC66AK-T30/ASC66MK-T30

ASC66AK-T10/ASC66MK-T10

Features

Functions System Configuration

List of Motor and

Notes:

•Pay attention to heat dissipation from motor and driver. In particular, remember that the motor will produce a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor case under 100°C (212°F). [Under 75°C (167°F) is required to comply with UL or CSA standards.]

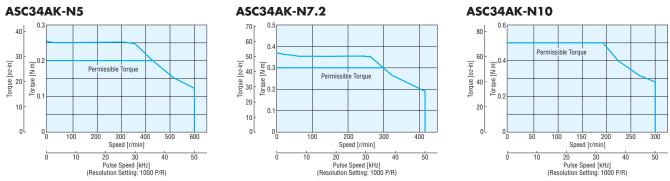
PN Geared Type Motor Frame Size 28 mm (1.10 in.)

Specifications (RoHS)

Model	Standard	ASC34AK-N5	ASC34AK-N7.2	ASC34AK-N10
Maximum Holding Torque N·m (oz-in)		0.2 (28)	0.3 (42)	0.5 (71)
Rotor Inertia	J: kg⋅m² (oz-in²)		11×10 ⁻⁷ (0.06)	
Backlash	arc minute (degrees)		3 (0.05°)	
Angle Error	min		6 (0.1°)	
Permissible Speed Ra	inge r/min	0~600	0~416	0~300
Gear Ratio		5:1	7.2:1	10:1
Resolution*1 Re	esolution Setting: 1000 P/R	0.072°/Pulse	0.05°/Pulse	0.036°/Pulse
Permissible Torque	N·m (oz-in)	0.2 (28)	0.3 (42)	0.5 (71)
Maximum Torque ^{*2}	N⋅m (oz-in)		0.5 (71)	
Power	Voltage		24 VDC±10%	
Source	Maximum Input Current A		1	
Mass	Motor kg (lb.)		0.28 (0.62)	
IVIdSS	Driver kg (lb.)		0.25 (0.55)	
Dimension No.	Motor		7	
Dimension NO.	Driver		13	

How to Read Specifications Table → Page 73

*1 The resolution can be set to any one of 500 P/R, 1000 P/R, 5000 P/R, or 10000 P/R with the resolution select switch or resolution select switching signals.


Resolution Select Switch -> Page 68

*2 The value of Maximum Torque is for gear. For output torque for geared motor, refer to the Speed - Torque Characteristics.

Note:

Direction of rotation of the motor shaft and that of the gear output shaft are the same.

Speed – Torque Characteristics How to Read Speed-Torque Characteristics -> Page 73

Notes:

Pay attention to heat dissipation from motor and driver. In particular, remember that the motor will produce a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor case under 100°C (212°F). [Under 75°C (167°F) is required to comply with UL or CSA standards.]

PN Geared Type Motor Frame Size 42 mm (1.65 in.)

Specifications (RoHS)

Electromagnetic Brake ASC46MK-N7.2 ASC46MK-N10 cimum Holding Torque N·m (lb-in) 1.5 (13.2) or Inertia J: kg·m² (oz-in²) 68×10 ⁻⁷ (0.37) [83×10 ⁻⁷ (0.454)]*1 klash arc minute (degrees) 2 (0.034°) le Error min 6 (0.1°) missible Speed Range r/min 0~333 r Ratio 7.2:1 10:1 olution*2 Resolution Setting: 1000 P/R 0.05°/Pulse 0.036°/Pulse missible Torque N·m (lb-in) 1.5 (13.2) 0.036°/Pulse missible Torque N·m (lb-in) 2 (17.7) 0/240 ver Voltage 24 VDC±10% 0/240 rce Maximum Input Current A 1.7 1.7 ver Fower Supply Input 24 VDC±5% 0.08 Power Consumption W 2 2 2 Excitation Current A 0.08 0.08 0.75 (6.6)	Madal	Standard	ASC46AK-N7.2	ASC46AK-N10		
or Inertia J: kg·m² (oz-in²) $68 \times 10^{-7} (0.37) [83 \times 10^{-7} (0.454)]^{$1}$ klash arc minute (degrees) 2 (0.034°) le Error min 6 (0.1°) missible Speed Range r/min 0~333 r Ratio 7.2:1 10:1 olution ^{®2} Resolution Setting: 1000 P/R 0.05°/Pulse 0.036°/Pulse missible Torque N·m (lb-in) 1.5 (13.2) 10:1 cimum Torque ^{\$3} N·m (lb-in) 2 (17.7) 2 (17.7) //rer Voltage 24 VDC±10% 2 (17.7) //rer Voltage 24 VDC±5% 9/Power Supply Input 2 4 VDC±5% //rev Maximum Input Current A 1.7 1.7 1.7 //rev Ype Active when power is off 1.7 //rever Power Supply Input 24 VDC±5% 2.4 1.7 //rever Static Friction Torque N·m (lb-in) 0.75 (6.6) 0.75 (6.6) //rever kg (lb.) 0.71 (1.6) [0.81 (1.8)] ^{\$*1} 0.25 (0.55) 1.8	Model E	lectromagnetic Brake	ASC46MK-N7.2	ASC46MK-N10		
klash arc minute (degrees) 2 (0.034°) le Error min 6 (0.1°) missible Speed Range r/min 0~333 0~240 r Ratio 7.2:1 10:1 olution ^{®2} Resolution Setting: 1000 P/R 0.05°/Pulse 0.036°/Pulse missible Torque N·m (lb-in) 1.5 (13.2) 10:1 missible Torque N·m (lb-in) 2 (17.7) 2 (17.7) //rer Voltage 24 VDC±10% 2 (17.7) //rer Voltage 24 VDC±5% 2 (VDC±5% //rec Maximum Input Current A 1.7 1.7 //remagnetic Power Supply Input 24 VDC±5% 24 VDC±5% Power Consumption W 2 2 2 //res Motor 0.08 5 5 0.71 (1.6) [0.81 (1.8)]*1 //res Motor kg (lb.) 0.25 (0.55) 0.25 (0.55)	Maximum Holding	g Torque N·m (Ib-in)	1.5 (13.2)		
le Error min 6 (0.1°) missible Speed Range r/min 0~333 0~240 r Ratio 7.2:1 10:1 olution ⁴² Resolution Setting: 1000 P/R 0.05°/Pulse 0.036°/Pulse missible Torque N·m (lb-in) 1.5 (13.2) 10:1 minum Torque ⁴³ N·m (lb-in) 2 (17.7) /er Voltage 24 VDC±10% rce Maximum Input Current A 1.7 Active when power is off Power Supply Input 24 VDC±5% Power Consumption W 2 2 Excitation Current A 0.08 0.75 (6.6) is Motor Motor 0.25 (0.55)	Rotor Inertia	J: kg⋅m² (oz-in²)	68×10 ⁻⁷ (0.37) [8	3×10 ⁻⁷ (0.454)]*1		
missible Speed Range r/min 0~333 0~240 r Ratio 7.2:1 10:1 olution ⁴² Resolution Setting: 1000 P/R 0.05°/Pulse 0.036°/Pulse missible Torque N·m (lb-in) 1.5 (13.2) 10:1 timum Torque ⁴³ N·m (lb-in) 2 (17.7) /er Voltage 24 VDC±10% rce Maximum Input Current A 1.7 tromagnetic Power Supply Input 24 VDC±5% Power Consumption W 2 Excitation Current A 0.08 Static Friction Torque N·m (lb-in) 0.75 (6.6) is Motor 0.25 (0.55)	Backlash	arc minute (degrees)	2 (0.	034°)		
r Ratio 7.2:1 10:1 olution*2 Resolution Setting: 1000 P/R 0.05°/Pulse 0.036°/Pulse missible Torque N·m (lb-in) 1.5 (13.2) 10:1 timum Torque*3 N·m (lb-in) 2 (17.7) 2 (17.7) /er Voltage 24 VDC±10% 0.036°/Pulse rce Maximum Input Current A 1.7 1.7 tromagnetic Power Supply Input 24 VDC±5% 24 VDC±5% Power Consumption W 2 2 24 VDC±5% Static Friction Torque N·m (lb-in) 0.75 (6.6) 0.71 (1.6) [0.81 (1.8)]*1 is Motor Kg (lb.) 0.25 (0.55)	Angle Error	min	6 (0).1°)		
Olution®2 Resolution Setting: 1000 P/R 0.05°/Pulse 0.036°/Pulse nissible Torque N·m (lb-in) 1.5 (13.2) timum Torque®3 N·m (lb-in) 2 (17.7) rer Voltage 24 VDC±10% rce Maximum Input Current A 1.7 tromagnetic Power Supply Input 24 VDC±5% Power Consumption W 2 Excitation Current A 0.08 Static Friction Torque N·m (lb-in) 0.75 (6.6) is Motor 0.25 (0.55)	Permissible Speed	d Range r/min	0~333	0~240		
Inissible Torque N-m (lb-in) 1.5 (13.2) timum Torque* N-m (lb-in) 2 (17.7) rer Voltage 24 VDC±10% rce Maximum Input Current A 1.7 tromagnetic Power Supply Input 24 VDC±5% Power Consumption W 2 Excitation Current A 0.08 Static Friction Torque N·m (lb-in) or kg (lb.) 0.71 (1.6) [0.81 (1.8)]*1 Driver kg (lb.) 0.25 (0.55)	Gear Ratio		7.2:1	10:1		
timum Torque**3 N-m (lb-in) 2 (17.7) rer Voltage 24 VDC±10% rce Maximum Input Current A 1.7 tromagnetic Power Supply Input 24 VDC±5% Power Supply Input 24 VDC±5% Excitation Current A 0.08 Static Friction Torque N-m (lb-in) is Motor 0.71 (1.6) [0.81 (1.8)]*1 ension No Motor [8]	Resolution*2	Resolution Setting: 1000 P/R	0.05°/Pulse	0.036°/Pulse		
Ver Voltage 24 VDC±10% rce Maximum Input Current A 1.7 tromagnetic Type Active when power is off Power Supply Input 24 VDC±5% Power Consumption W 2 Excitation Current A 0.08 Static Friction Torque N·m (Ib-in) is Motor 0.71 (1.6) [0.81 (1.8)]*1 priver kg (Ib.) 0.25 (0.55)	Permissible Torqu	ie N·m (Ib-in)	1.5 (13.2)		
Maximum Input Current A 1.7 tromagnetic Type Active when power is off Power Supply Input 24 VDC±5% Power Consumption W 2 Excitation Current A 0.08 Static Friction Torque N·m (Ib-in) 0.75 (6.6) is Motor 0.25 (0.55) ension No Motor 8	Maximum Torque	^{∗3} N·m (lb-in)	2 (17.7)			
Motor Type Active when power is off Power Supply Input 24 VDC±5% Power Consumption W 2 Excitation Current A 0.08 Static Friction Torque N·m (Ib-in) 0.75 (6.6) is Motor 0.25 (0.55)	Power	Voltage	24 VD0	C±10%		
Power Supply Input 24 VDC±5% Power Consumption W 2 Excitation Current A 0.08 Static Friction Torque N·m (Ib-in) 0.75 (6.6) is Motor kg (Ib.) 0.71 (1.6) [0.81 (1.8)]*1 priver kg (Ib.) 0.25 (0.55)	Source	Maximum Input Current A	1	.7		
Power Consumption W 2 Excitation Current A 0.08 Static Friction Torque N·m (lb-in) is Motor Image: Motor (lb.) ension No Motor		Туре	Active when	power is off		
Motor Motor 0.08 Static Friction Torque N·m (lb-in) 0.75 (6.6) Static Friction Torque N·m (lb.in) 0.71 (1.6) [0.81 (1.8)]*1 Static Friction Torque No 0.71 (1.6) [0.51 (1.8)]*1 Static Friction Torque No 0.75 (6.6) Motor kg (lb.) 0.25 (0.55) Motor Image: Static Torque Image: Static Torque Torque	Electromagnetic	Power Supply Input	24 VDC±5%			
Static Friction Torque N·m (lb-in) 0.75 (6.6) is Motor kg (lb.) 0.71 (1.6) [0.81 (1.8)]*1 Driver kg (lb.) 0.25 (0.55) ension No Motor 8	Brake*4	Power Consumption W	:	2		
Motor kg (lb.) 0.71 (1.6) [0.81 (1.8)]*1 Driver kg (lb.) 0.25 (0.55) Motor 8		Excitation Current A	0.	08		
Driver kg (lb.) 0.25 (0.55) ension No Motor 8	5	Static Friction Torque N·m (Ib-in)	0.75	(6.6)		
Driver kg (lb.) 0.25 (0.55) ension No 8	Mass	Motor kg (lb.)	0.71 (1.6) [D.81 (1.8)] ^{*1}		
	111222	Driver kg (lb.)	0.25	(0.55)		
Driver 13	Dimension No	Motor		3		
		Driver	1	3		

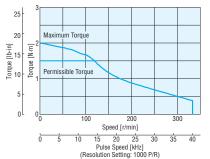
How to Read Specifications Table → Page 73

*1 The values inside the brackets [] represent the specification for the electromagnetic brake type.

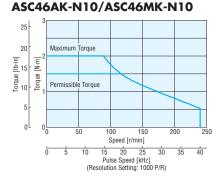
*2 The resolution can be set to any one of 500 P/R, 1000 P/R, 5000 P/R, or 10000 P/R with the resolution select switch or resolution select switching signals.

Resolution Select Switch → Page 68

*3 The value of Maximum Torque is for gear. For output torque for geared motor, refer to the Speed - Torque Characteristics.


*4 The electromagnetic brakes are for holding the position when the power is off. They cannot be used for complicated braking. Also, a separate 24 VDC±5%, 0.1 A minimum. power supply is required for the electromagnetic brakes.

Note


Direction of rotation of the motor shaft and that of the gear output shaft are the same.

Speed – Torque Characteristics

ASC46AK-N7.2/ASC46MK-N7.2

How to Read Speed-Torque Characteristics -> Page 73

Notes

Pay attention to heat dissipation from motor and driver. In particular, remember that the motor will produce a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor case under 100°C (212°F). [Under 75°C (167°F) is required to comply with UL or CSA standards.]

•When using the motor with the dedicated driver, the driver's automatic current cutback at motor standstill function reduces maximum holding torque by approximately 50%.

Line-up

57

PN Geared Type Motor Frame Size 60 mm (2.36 in.)

Specifications (RoHS)

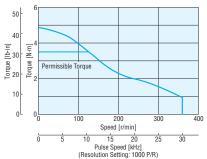
Madal S	tandard		ASC66AK-N5	ASC66AK-N7.2	ASC66AK-N10	ASC66AK-N25	ASC66AK-N36	ASC66AK-N50
Model El	ectromagnetic Brake		ASC66MK-N5	ASC66MK-N7.2	ASC66MK-N10	ASC66MK-N25	ASC66MK-N36	ASC66MK-N50
Maximum Holding	Torque	N⋅m (lb-in)	3.5 (30)	4 (35)	5 (44)		8 (70)	
Rotor Inertia	J: kg	·m ² (oz-in ²)			405×10 ⁻⁷ (2.2) [564×10 ⁻⁷ (3.1)]*1		
Backlash	arc minut	te (degrees)		2 (0.034°)			3 (0.05°)	
Angle Error	arc minut	te (degrees)			5 (0.	084°)		
Permissible Speed	Range	r/min	0~360	0~250	0~180	0~72	0~50	0~36
Gear Ratio			5:1	7.2:1	10:1	25:1	36:1	50:1
Resolution*2	Resolution Setting	g: 1000 P/R	0.072°/Pulse	0.05°/Pulse	0.036°/Pulse	0.0144°/Pulse	0.01°/Pulse	0.0072°/Pulse
Permissible Torque	e	N⋅m (lb-in)	3.5 (30)	4 (35)	5 (44)		8 (70)	
Maximum Torque*	:3	N⋅m (lb-in)	7 (61)	9 (79)	11 (97)	16 (140)	20 (170)
Power	Voltage				24 VD0	C±10%		
Source	Maximum Input	Current A	3.7					
	Туре		Active when power is off					
Electromagnetic	Power Supply I	nput	24 VDC±5%					
Brake**4	Power Consum	ption W			(6		
	Excitation Curre	ent A			0.	25		
S	tatic Friction Torque	N⋅m (lb-in)	1.75 (15.4)	2 (17.7)	2.5 (22)		4 (35)	
Mass	Motor	kg (lb.)	1.5 (3.3) [1.75 (3.9)]*1		1.7 (3.7) [1.95 (4.3)]*1			
IVIASS	Driver	kg (lb.)		0.25 (0.55				
Dimension No.	Motor		9					
	Driver		13					

How to Read Specifications Table → Page 73

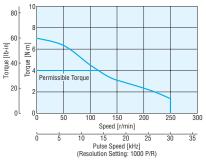
*1 The values inside the brackets [] represent the specification for the electromagnetic brake type.

*2 The resolution can be set to any one of 500 P/R, 1000 P/R, 5000 P/R, or 10000 P/R with the resolution select switch or resolution select switching signals.

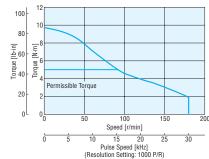
Resolution Select Switch -> Page 68

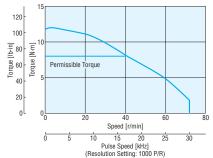

- *3 The value of Maximum Torque is for gear. For output torque for geared motor, refer to the Speed Torque Characteristics.
- *4 The electromagnetic brakes are for holding the position when the power is off. They cannot be used for complicated braking. Also, a separate 24 VDC±5%, 0.3 A minimum power supply is required for the electromagnetic brakes.

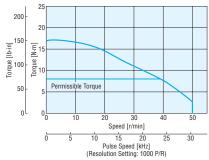
Note:

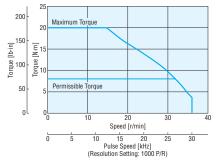

Direction of rotation of the motor shaft and that of the gear output shaft are the same.

Speed – Torque Characteristics How to Read Speed-Torque Characteristics -> Page 73


ASC66AK-N5/ASC66MK-N5


ASC66AK-N7.2/ASC66MK-N7.2


ASC66AK-N10/ASC66MK-N10


ASC66AK-N25/ASC66MK-N25

ASC66AK-N36/ASC66MK-N36

ASC66AK-N50/ASC66MK-N50

Notes:

Pay attention to heat dissipation from motor and driver. In particular, remember that the motor will produce a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor case under 100°C (212°F) [Under 75°C (167°F) is required to comply with UL or CSA standards.]

Harmonic Geared Type Motor Frame Size 28 mm (1.10 in.), 42 mm (1.65 in.), 60 mm (2.36 in.)

Specifications (RoHS)

•									
Madal	Standard		ASC34AK-H50	ASC34AK-H100	ASC46AK-H50	ASC46AK-H100	ASC66AK-H50	ASC66AK-H100	
Model –	Electromagnetic Brak	e	-	-	ASC46MK-H50	ASC46MK-H100	ASC66MK-H50	ASC66MK-H100	
Maximum Holdin	ig Torque	N⋅m (lb-in)	1.5 (13.2)	2 (17.7)	3.5 (30)	5 (44)	5.5 (48)	8 (70)	
Rotor Inertia		J: kg·m ² (oz-in ²)	14×10 ⁻¹	(0.077)	85×10 ⁻⁷ (0.46) [1	00×10 ⁻⁷ (0.55)]*1	440×10 ⁻⁷ (2.4) [599×10 ⁻⁷ (3.3)]*1	
Permissible Spee	ed Range	r/min	0~70	0~35	0~48	0~24	0~36	0~18	
Gear Ratio			50:1	100:1	50:1	100:1	50:1	100:1	
Resolution*2	Resolution S	Setting: 1000 P/R	0.0072°/Pulse	0.0036°/Pulse	0.0072°/Pulse	0.0036°/Pulse	0.0072°/Pulse	0.0036°/Pulse	
Permissible Torq	ue	N⋅m (lb-in)	1.5 (13.2)	2 (17.7)	3.5 (30)	5 (44)	5.5 (48)	8 (70)	
Maximum Torque	Э	N⋅m (lb-in)	2 (17.7)	2.8 (24)	8.3 (73)	11 (97)	18 (159)	28 (240)	
Lost Motion (Load Torque)		arc minute	3 max. (±0.06 N⋅m)	3 max. (±0.08 N⋅m)	1.5 max. (±0.16 N⋅m)	1.5 max. (±0.2 N⋅m)	0.7 max. (±0.28 N⋅m)	0.7 max. (±0.39 N⋅m)	
Power	Voltage		24 VDC±10%					1	
Source	Maximum	Input Current A	1		1	.7	3	.7	
	Туре		-	-		Active when	power is off		
Electromagnetic	Power Su	pply Input	-	-	24 VD		C±5%		
Brake*3	Power Co	nsumption W	-	- 2		2	6		
	Excitation	Current A	-	-	0.	08	0.	25	
	Static Friction Tor	que N⋅m (lb-in)	-	_	1.75 (15.4)	2.5 (22)	2.75 (24)	4 (35)	
Mass	Motor	kg (lb.)	0.25	(0.55)	0.7 (1.5) [0.8 (1.8)]*1	1.4 (3.1) [1	.65 (3.6)]*1	
IVIASS	Driver	kg (lb.)	0.25 (0.55)						
Dimension No.	Motor		1	0	1	1	1	2	
Dimension No.	Driver				[1	3			

How to Read Specifications Table -> Page 73

*1 The values inside the brackets [] represent the specification for the electromagnetic brake type.

*2 The resolution can be set to any one of 500 P/R, 1000 P/R, 5000 P/R, or 10000 P/R with the resolution select switch or resolution select switching signals.

Resolution Select Switch → Page 68

*3 The electromagnetic brakes are for holding the position when the power is off. They cannot be used for complicated braking. Also, a separate 24 VDC±5%, 0.3 A minimum (ASC46: 0.1 A minimum) power supply is required for the electromagnetic brakes.

Note:

The inertia represents a sum of the inertia of the harmonic gear converted to a motor shaft value, and the rotor inertia. Direction of rotation of the motor shaft and that of the gear output shaft are the opposite.

Speed – Torque Characteristics How to Read Speed-Torque Characteristics → Page 73 ASC34AK-H50 ASC46AK-H50/ASC46MK-H50 ASC66AK-H50/ASC66MK-H50 2.0 100 200 15 Maximum Torque 21 80 1. Maximum Torque 150 [Ip-in] 100 ssible Torque Torque [lb-in] 드 년 60 Torque [N·m] Torque [N·m] [N·m]] anbio 40 orque 0.5 50 20 Permissible Torque Permissible Torque nl 0 0 0 0 Speed [r/min] Speed [r/min] Speed [r/min] ň 0 15 20 25 30 Pulse Speed [kHz] (Resolution Setting: 1000 P/R) 0 10 30 40 50 60 5 10 35 40 ň 20 30 20 Pulse Speed [kHz] (Resolution Setting: 1000 P/R) Pulse Speed [kHz] (Resolution Setting: 1000 P/R) ASC34AK-H100 ASC46AK-H100/ASC46MK-H100 ASC66AK-H100/ASC66MK-H100 3.0 30 100 25 250 Maximum Torque Maximum Torque 2.5 Maximum 25 Torau 20 80 200 [ui-q]] 15 10 10 [ui-q] anbio 40 .두 _____ 150 Torque [N·m] Permissible Torque Torque [N·m] Toraue [N·m] an Lou Permiss ible Torau 20 50 . missible Torqu 0.5 ٥l 05 ٥ 40 Speed [r/min] Speed [r/min] Speed [r/min] 30 60 0 20 30 Pulse Speed [kHz] (Resolution Setting: 1000 P/R) 10 0

Notes

ň

20

40

Pulse Speed [kHz] (Resolution Setting: 1000 P/R)

Pay attention to heat dissipation from motor and driver. In particular, remember that the motor will produce a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor case under 100°C (212°F). [Under 75°C (167°F) is required to comply with UL or CSA standards.]

40

ň

10

Pulse Speed [kHz] (Resolution Setting: 1000 P/R)

In order to prevent fatigue of the gear grease in the harmonic gear, keep the temperature of the gear case under 70°C (158°F).

When using the motor with the dedicated driver, the driver's automatic current cutback at motor standstill function reduces maximum holding torque by approximately 50%.

10

Functions System Configuration

List of Motor and

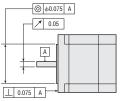
Controllers

30

Driver Specifications

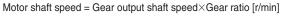
Speed and Positioning Control Command	d Positioning Control Command Pulse input						
Maximum Input Pulse Frequency 250 kHz (When the pulse duty is 50%)							
Protective Functions When the protective functions are activated, an alarm signal is output and the motor stops automatically. Overload, Overvoltage, Speed error, Overspeed, EEPROM data error, Sensor error, System error							
Input Signals	Photocoupler input Input resistance: 220 Ω Input current: 7~20 mA [Pulse signal/Rotation direction signal (Negative logic pulse input), CW pulse signal/CCW pulse signal (Negative logic pulse input), All windings off, Alarm clear, Resolution setting]						
Output Signals	Photocoupler, Open-collector output, External use condition: 30 VDC maximum, 15 mA maximum (Positioning completion signal, Alarm signal, Timing signal) Transistor, Open-collector output, External use condition: 30 VDC maximum, 15 mA maximum (Feedback pulse ASG-BSG signal)						

General Specifications

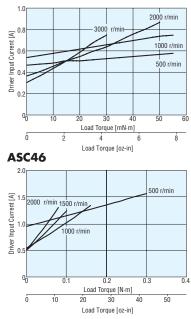

This is the value after rated operation at normal temperature and normal humidity.

Specifications		Motor	Driver	
Motor Insulation Class		Class B [130°C (266°F)][UL/CSA: Recognized as class A 105°C (221°F)]	_	
Insulation Resistance		100 MΩ minimum when measured by a 500 VDC megger between the following places · Frame-Windings · Frame-Electromagnetic brake windings	100 MΩ minimum when measured by a 500 VDC megger between the following places · Heat sink-Power supply input terminal	
Dielectric Strength		Sufficient to withstand the following for one minute: • Frame-Windings 0.5 kV 50 Hz or 60 Hz • Frame-Electromagnetic brake windings 1.0 kV 50 Hz or 60 Hz	Sufficient to withstand the following for one minute: · Heat sink-Power supply input terminal 0.5 kV 50 Hz or 60 Hz	
Operating Environment	Ambient Temperature	$\begin{array}{l} 0^{\circ}C \sim +50^{\circ}C \ (+32^{\circ}F \sim +122^{\circ}F) \ (nonfreezing): \ Standard \ Type \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \$	$0^\circ C {\sim} + 40^\circ C ~(+32^\circ F {\sim} + 104^\circ F)$ (nonfreezing)	
(In Operation)	Ambient Humidity	85% or less (n	ioncondensing)	
	Atmosphere	No corrosive gases	s, dust, water or oil.	
Static Angle	Error	± 5 arc minutes (0.084°)	_	
Shaft Runout		0.05 mm (0.002 inch) T.I.R.*	-	
Concentricity	y	0.075 mm (0.003 inch) T.I.R.*	-	
Perpendicularity		0.075 mm (0.003 inch) T.I.R.* –		

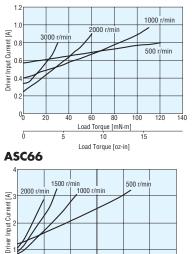
*T.I.R. (Total Indicator Reading): The total dial gauge reading when the measurement section is rotated one revolution centered on the reference axis center.


Note:

Do not measure insulation resistance or perform the dielectric strength test while the motor and driver are connected.


Load Torque – Driver Input Current Characteristics

This is the relationship between the load torque and driver input current at each speed when the motor is operated. From these characteristics, the current capacity required when used for multiple axes can be estimated. For geared motors convert to torque and speed at the motor axis.


Motor shaft torque =
$$\frac{\text{Gear output shaft torque}}{\text{Gear ratio}}$$
 [N·m (oz-in)]

0

0.2 1.0 0.4 0.6 0.8 Load Torque [N·m] ő 50 100 150

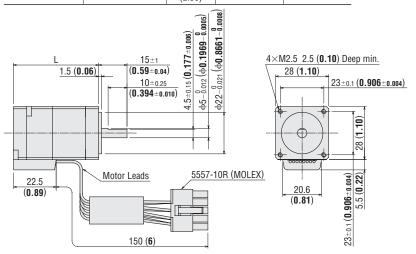
1.2

Permissible Overhung Load and Permissible Thrust Load

Туре	Model	Gear Ratio	Overhung Load Distance from Shaft End mm (in.)					Thrust Load
			0	5 (0.2)	10 (0.39)	15 (0.59)	20 (0.79)	
Ctandard Tuna	ASC34AK ASC36AK		25 (5.6)	34 (7.6)	52 (11.7)	-	-	The permissible thrust load shall be
Standard Type	ASC46 K	_	20 (4.5)	25 (5.6)	34 (7.6)	52 (11.7)	—	no greater than the
	ASC66		63 (14.1)	75 (16.8)	95 (21)	130 (29)	190 (42)	motor mass.
	ASC34AK-T	7.2, 10, 20, 30	15 (3.3)	17 (3.8)	20 (4.5)	23 (5.1)	-	10 (2.2)
TH Geared Type	ASC46 K-T	3.6, 7.2, 10,	10 (2.2)	14 (3.1)	20 (4.5)	30 (6.7)	-	15 (3.3)
	ASC66 K-T	20, 30	70 (15)	80 (18)	100 (22)	120 (27)	150 (33)	40 (9)
	ASC34AK-N	5, 7.2, 10	45 (10.1)	60 (13.5)	80 (18)	100 (22)	_	20 (4.5)
	ASC46 K-N	7.2, 10	100 (22)	120 (27)	150 (33)	190 (42)	—	
PN Geared Type	ASC66 K-N5	-	200 (45)	220 (49)	250 (56)	280 (63)	320 (72)	
	ASC66□K-N□	7.2, 10	250 (56)	270 (60)	300 (67)	340 (76)	390 (87)	100 (22)
	ASCOOLK-N	25, 36, 50	330 (74)	360 (81)	400 (90)	450 (101)	520 (117)	
	ASC34AK-H		140 (31)	160 (36)	200 (45)	240 (54)	—	
Harmonic Geared Type	ASC46 K-H	50, 100	180 (40)	220 (49)	270 (60)	360 (81)	510 (114)	220 (49)
	ASC66 K-H		320 (72)	370 (83)	440 (99)	550 (123)	720 (162)	450 (101)

 \blacksquare Enter A (standard) or M (electromagnetic brake) in the box ([]) within the model name.

Enter the gear ratio in the box (\square) within the model name.

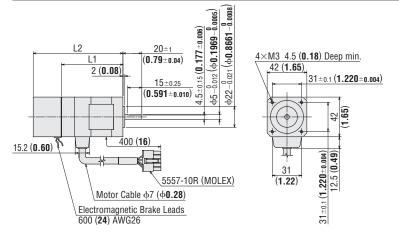

Dimensions Unit = mm (inch)

Motor

♦Standard Type

1 □28 mm (□1.10 in.)

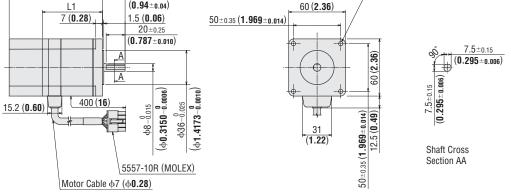
Model	Motor Model	L mm (in.)	Mass kg (lb.)	CAD
ASC34AK	ASM34AK	45 (1.77)	0.15 (0.33)	B274
ASC36AK	ASM36AK	65 (2.56)	0.22 (0.48)	B275



AC Input AS Series

Features

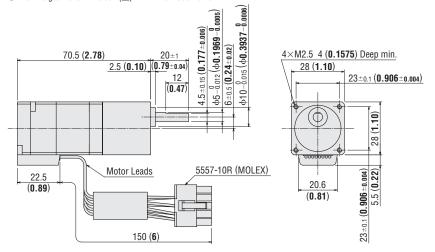
2 42 mm (1.65 in.)


Model	Motor Model	L1 mm (in.)	L2 mm (in.)	Mass kg (lb.)	CAD
ASC46AK	ASM46AK	64.9 (2.56)	-	0.5 (1.1)	B192
ASC46MK	ASM46MK	-	94.9 (3.74)	0.6 (1.3)	B193

♦Standard Type

3 □60 mm (□2.36 in.)

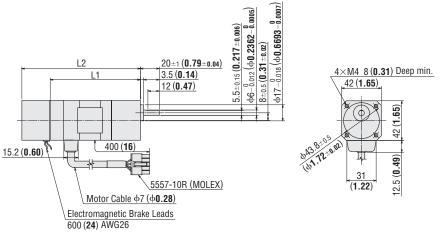
Model	Motor Model	L1 mm (in.)	L2 mm (in.)	Mass kg (lb.)	CAD
ASC66AK	ASM66AK	63.6 (2.50)	-	0.85 (1.9)	B194
ASC66MK	ASM66MK	—	98.6 (3.88)	1.1 (2.4)	B195
+L2	24±1	4>	≺¢4.5 (¢ 0.177) Th		
L1	(0.94±0.04	4)		60 (2.36)	



♦ TH Geared Type

4 □28 mm (□1.10 in.)

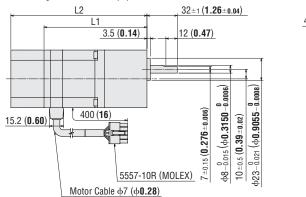
Model	Motor Model	Gear Ratio	Mass kg (lb.)	CAD
ASC34AK-T	ASM34AK-T	7.2, 10, 20, 30	0.21 (0.46)	B357

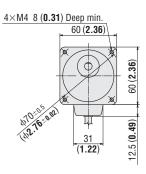

•Enter the gear ratio in the box (\Box) within the model name.

5 42 mm (1.65 in.)

Model	Motor Model	Gear Ratio	L1 mm (in.)	L2 mm (in.)	Mass kg (lb.)	CAD
ASC46AK-T	ASM46AK-T	3.6, 7.2, 10, 20, 30	95.4 (3.76)	—	0.65 (1.4)	B199
ASC46MK-T	ASM46MK-T		_	125.4 (4.94)	0.75 (1.7)	B200

• Enter the gear ratio in the box (\Box) within the model name.

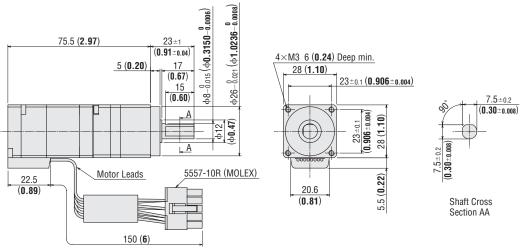



○TH Geared Type

6 □60 mm (□2.36 in.)

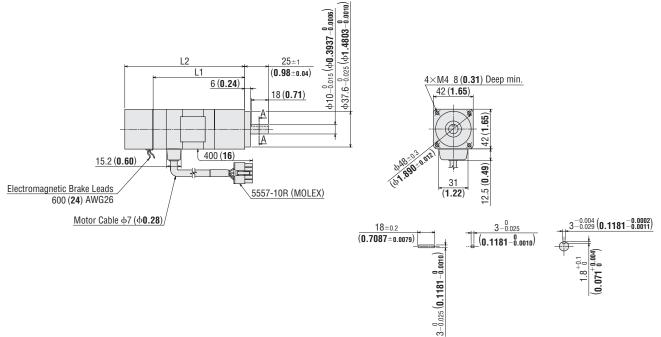
Model	Motor Model	Gear Ratio	L1 mm (in.)	L2 mm (in.)	Mass kg (lb.)	CAD
ASC66AK-T	ASM66AK-T	3.6, 7.2, 10, 20, 30	108.6 (4.28)	-	1.25 (2.8)	B201
ASC66MK-T	ASM66MK-T		-	143.6 (5.65)	1.5 (3.3)	B202

•Enter the gear ratio in the box (\Box) within the model name.



◇PN Geared Type

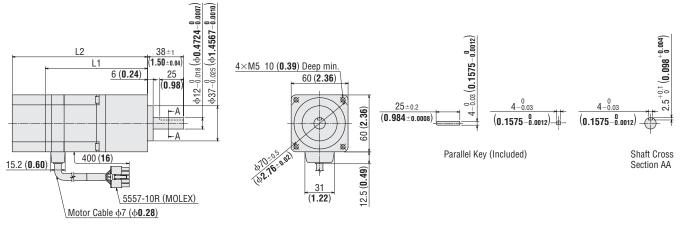
7 28 mm (21.10 in.)


Model	Motor Model	Gear Ratio	Mass kg (lb.)	CAD
ASC34AK-N	ASM34AK-N□	5, 7.2, 10	0.28 (0.62)	B358

•Enter the gear ratio in the box (\Box) within the model name.

Model	Motor Model	Gear Ratio	L1 mm (in.)	L2 mm (in.)	Mass kg (lb.)	CAD
ASC46AK-N	ASM46AK-N□	7.2, 10	96.9 (3.81)	-	0.71 (1.6)	B306
ASC46MK-N	ASM46MK-N		-	126.9 (5.00)	0.81 (1.8)	B307

 \blacksquare Enter the gear ratio in the box () within the model name.



◇PN Geared Type

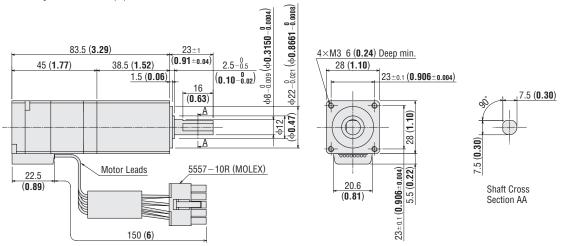
9 60 mm (2.36 in.)

Model	Motor Model	Gear Ratio	L1 mm (in.)	L2 mm (in.)	Mass kg (lb.)	CAD
ASC66AK-N	ASM66AK-N🗆	5, 7.2, 10	107.6 (4.24)	-	1.5 (3.3)	B226
		25, 36, 50	123.6 (4.87)	-	1.7 (3.7)	B228
ASC66MK-N	ASM66MK-N□	5, 7.2, 10	-	142.6 (5.61)	1.75 (3.9)	B227
		25, 36, 50	-	158.6 (6.24)	1.95 (4.3)	B229

●Enter the gear ratio in the box (□) within the model name.

Parallel Key (Included)

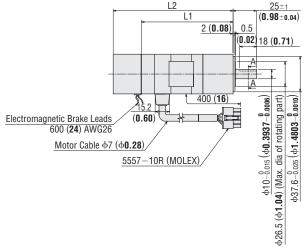
Shaft Cross Section AA Features

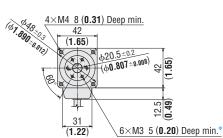

Line-up

◇Harmonic Geared Type

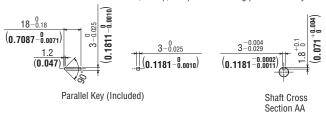
10 28 mm (21.10 in.)

Model	Motor Model	Gear Ratio	Mass kg (lb.)	CAD
ASC34AK-H	ASM34AK-H	50, 100	0.25 (0.55)	B289


•Enter the gear ratio in the box (\Box) within the model name.

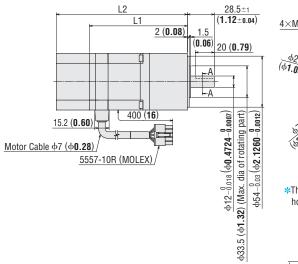


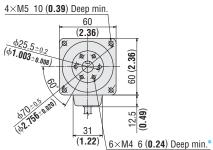
11 42 mm (1.65 in.)


Model	Motor Model	Gear Ratio	L1 mm (in.)	L2 mm (in.)	Mass kg (lb.)	CAD
ASC46AK-H	ASM46AK-H	50, 100	96.9 (3.81)	-	0.7 (1.5)	B308
ASC46MK-H	ASM46MK-H□		-	126.9 (5.00)	0.8 (1.8)	B309

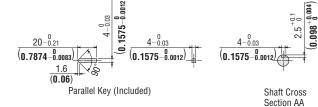
 $\bullet \mathsf{Enter}$ the gear ratio in the box () within the model name.

*The position of the key slot on the output shaft [φ10 (φ0.3937)] relative to the screw holes on a maximum diameter of φ26.5 (φ1.04) on the rotating part is arbitrary.

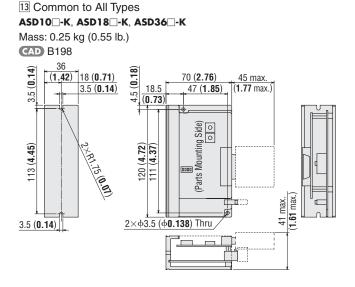



⊘Harmonic Geared Type

12 60 mm (2.36 in.)

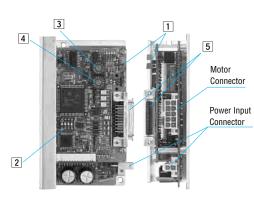

Model	Motor Model	Gear Ratio	L1 mm (in.)	L2 mm (in.)	Mass kg (lb.)	CAD
ASC66AK-H	ASM66AK-H🗆	50, 100	103.6 (4.08)	-	1.4 (3.1)	B310
ASC66MK-H	ASM66MK-H	50, 100	-	138.6 (5.46)	1.65 (3.6)	B311

•Enter the gear ratio in the box (\Box) within the model name.



*The position of the key slot on the output shaft [ϕ 12 (ϕ 0.4724)] relative to the screw holes on a maximum diameter of ϕ 33.5 (ϕ 1.32) on the rotating part is arbitrary

Oriver



- I/O Connector (Included) Cover Assembly: 54331-0361 (MOLEX) Connector: 54306-3619 (MOLEX)
- Power Input Connector (Included) Connector: 5557-02R (MOLEX) Crimp Terminal: 5556TL (MOLEX)

Line-up

Connection and Operation

Names and Functions of Driver Parts

1 Signal Monitor Display

♦LED Indicators

Indication Color Function		Function	When Activated
LED1	Green	Power supply indication	Lights when power is on.
LED2 Red Alarm indication		Alarm indication	Blinks when protective functions are activated.

⇔Alarm

_

Blink Count	Function	When Activated		
2	Overload	The motor is operated continuously over 5 seconds under a load exceeding the maximum torque.		
3	Overvoltage	The primary voltage of the driver's inverter exceeds the permissible value.		
4	Speed error	The motor cannot accurately follow at the indicated pulse speed.		
6	Overspeed	The motor shaft velocity exceeds 5000 r/min. (Except geared type)		
7	EEPROM data error	The EEPROM has a fault.		
8	8 Sensor error The power source turns on when the motor cable is not connected to the driver.			
Lights (No blinking) System error Th		The driver has fatal error.		

2 Function Switches

Indication	Switch Name	Function
1000/500 ×1/×10	Resolution select switch	This function is for selecting the motor resolution. For each geared type, the resolution of gear output shaft is 1/gear ratio. "1000" "×1" \rightarrow 1000 Pulses (0.36°/step) "1000" "×10" \rightarrow 10000 Pulses (0.036°/step) "500" "×1" \rightarrow 500 Pulses (0.72°/step) "500" "×10" \rightarrow 5000 Pulses (0.072°/step)
1P/2P	Pulse input mode switch	The settings of this switch are compatible with the following two types of pulse input modes: "1P" for the 1-pulse input mode, "2P" for the 2-pulse input mode.

Notes:

Always turn the power off before switching resolution or pulse input, and turn it ON again after you have made the change.
 If the Resolution Select Switch is set to "×10," it cannot control the resolution selected by the input terminals. It will always be "×10."

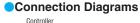
3 Current Adjustment Switch

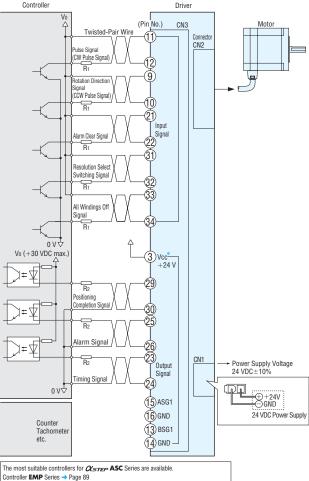
Indication	Switch Name Function	
CURRENT	Current adjustment switch	The motor running current can be lowered to suppress temperature rise in the motor and driver, or lower operating current in order to allow a margin for motor torque.

4 Velocity Filter Adjustment Switch

Indication	Switch Name		Function
V.FIL	Velocity filter adjustment switch	This switch is used to make adjustments when a smooth start-stop or smooth motion at low speed is required.	Set to "0" The difference in characteristics mode by the velocity filter.

5 Input/Output Signals


			3		
Indication	Input/Output	Pin. No	Signal	Name of Signal	
	External	2	GND	Power supply for signal control	
	power input	3	Vcc+24V		
	Input signal	9	DIR. (CCW)	Rotation direction (CCW pulse)*	
		10	DIR. (CCW)		
		11	PLS (CW)	Pulse (CW pulse)*	
		12	PLS (CW)		
	Output signal	13	BSG1	B-Phase pulse output (Open-collector)	
CN3		14	GND		
		15	ASG1	A-Phase pulse output (Open-collector)	
		16	GND		
	Input signal	21	ACL	Alarm clear	
		22	ACL		
	Output signal	23	TIM.1	Timing (Open-collector)	
		24	TIM.1		
		25	ALARM	Alarm	
		26	ALARM		
		29	END	Positioning completion	
		30	END		
	Input signal	31	×10	Resolution select	
		32	×10		
		33	C.OFF	All windings off	
		34	C.OFF		


Description of Input/Output Signals -> Page 71

*Signal name in parentheses represents the setting in 2-pulse input mode.

System Configuration

Before Using a Stepping Motor

◇Input Signal Connection

Signals can be connected directly when 5 VDC is supplied. If the signals are used at a voltage exceeding 5 VDC, be sure to provide an external resistor to prevent the current exceeding 20 mA from flowing. Internal components will be damaged if a voltage exceeding 5 VDC is supplied directly without using an external resistor.

Example) If the voltage is 24 VDC, connect a resistor (R1) of 1.5 to 2.2 k and 0.5 W or more.

◇Output Signal Connection

- Use output signals at 30 VDC or less and 15 mA or less.
- If these specifications are exceeded, the elements may be damaged.
- Check the specification of the connected equipment

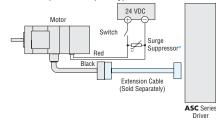
*Check the connection on page 71 when using a 24 VDC power supply for control signals.

◇Notes on Wiring

- OUse a multi-core, twisted-pair shielded wire AWG28 or thicker for the control input/output signal line (CN3), and keep wiring as short as possible [within 2 m (6.6 ft.)].
- Note that as the length of the pulse signal line increases, the maximum transmission frequency decreases.
- When it is necessary to have a connection more than 0.4 m (1.31 ft.) between motor and driver [0.15 m (0.5 ft.) or more: ASC34 and ASC36 types], the optional extension cable or flexible extension cable must be used. Electromagnetic brake motor models [except motor frame size 42 mm (1.65 in.)] must use an electromagnetic brake extension cable or flexible extension cable (sold separately). The frame size 42 mm (1.65 in.) models can use a standard extension cable even for electromagnetic brake motor models.
- The range of wire for the power connector (CN1) is AWG24~18. Use wire AWG20 or thicker for the power line.
- Keep the control input/output signal line at least 300 mm (1 ft.) away from power lines (e.g. lines carrying large current, such as AC lines and motor lines). Also, do not run these lines through the same ducts or pipes as power lines.
- The customer must furnish the cables for power supply lines and control input/output signal lines.
- Use included connector for connection of power source.
- To install the pins, be sure to use the specified crimping tool made by MOLEX 57026-5000 (for UL 1007) or 57027-5000 (for UL 1015).

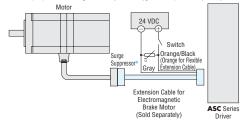
Controller EMP Series -> Page 89 Driver Cable -> Page 76

Connecting the Electromagnetic Brake to Power Supply


Connect the electromagnetic brake to the power supply using a cable with a conductor cross-sectional area of at least AWG24. The power supply input to the electromagnetic brake is 24 VDC ±5% 0.3 A minimum (ASC46: 0.1 A minimum) and therefore must be independent of the driver's power supply for signal control.

Notes:

- Applying a voltage that exceeds the specifications will cause the electromagnetic brake to generate a great deal of heat, resulting in motor temperature rises and possible damage to the motor. Conversely, if voltage is too low, the electromagnetic brake may not release.
- To protect the switch contacts and prevent noise, always connect the surge suppressor (Included).⁴ (*The surge suppressor is included with electromagnetic brake motors.)
- To prevent noise, use a dedicated power supply for electromagnetic brake. ●Correct polarity (+ and -) must be ensured when connecting the electromagnetic brake lead wire of ASC Series to the DC power supply. If polarity is incorrect, the electromagnetic brake will not operate properly.
- •When using as a CE certified part, use a dedicated DC power supply for electromagnetic brake

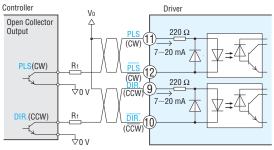

(1) **ASC46**

The electromagnetic brake wire is linked to the connector on the motor [600 mm (23.6 in.)]. When connecting with the DC power supply, connect the red spiral lead wire to +24 V, and the black lead wire to the ground (GND). Use the extension cable or the flexible extension cable (both sold separately)

(2) **ASC66**

The electromagnetic brake wire is linked to the connector on the driver connection side of extension cable for electromagnetic brake motor (sold separately). Be sure to use the accessory (sold separately) extension cable or flexible extension cable. Connect the orange/black spiral lead wire (orange for flexible extension cable) [60 mm (2.36 in.)] to +24 V, and the gray lead wire [60 mm (2.36 in.)] to the ground (GND).

Timing Chart for Electromagnetic Brake Operation To release the electromagnetic brake, wait at least 0.5 seconds after turning on the driver power source. The load may fall down due to a loss of holding torque. ON **Driver Power Source** OFF 0.5 s min.

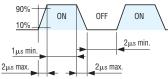

69

Description of Input/Output Signals

Indication of Input/Output Signal "ON""OFF"		
Input (Output) "ON" indicates that the current is sent into the photocoupler (transistor) inside the driver. Input (Output) "OFF" indicates that the current is not sent into the photocoupler (transistor) inside the driver. The input/output remains "OFF" if nothing is connected.	Photocoupler	OFF ON

PLS (CW) and DIR. (CCW) Input Signal

◇Input Circuit and Sample Connection



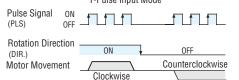
The colored characters indicate signals under the 1-pulse input mode, while the black characters indicate signals under the 2-pulse input mode.

Note:

The external resistor is not needed when Vo is 5 VDC. When the voltage exceeds 5 VDC, connect the external resistor R₁ to keep input current at 20 mA or less. When 5 VDC or more is applied without the external resistor, the elements get damaged.

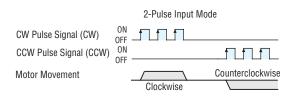
◇Pulse Waveform Characteristics

For pulse signals, use input pulse waveforms like those shown in the figure above.

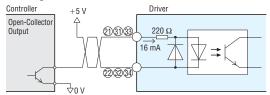

◇Pulse Input Modes

<1-Pulse Input Mode>

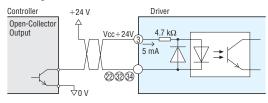
The 1-pulse input mode uses Pulse (PLS) and Rotation Direction (DIR.) signals. CW is selected by inputting DIR. signal at low level (with the input photocoupler ON), CCW by inputting at high level (with input photocoupler OFF).


[Rotation Direction Signals] Photocoupler "ON": Clockwise

Photocoupler "OFF": Counterclockwise 1-Pulse Input Mode


<2-Pulse Input Mode>

The 2-pulse input mode is used for "CW" and "CCW" pulses. When "CW" pulses are input, the motor's output shaft rotates clockwise when the motor is viewed facing the shaft; when "CCW" pulses are input, the shaft rotates counterclockwise.



All Windings OFF (C.OFF) Input Signal Resolution Select (×10) Input Signal Alarm Clear (ACL) Input Signal

- **⊘Input Circuit and Sample Connection**
- · When using 5 VDC

· When using 24 VDC

♦ All Windings OFF (C.OFF) Input Signal Pin No.33, 34

This controller power source offers a choice of either 5 VDC or 24 VDC. Inputting the All Windings Off (C.OFF) signal puts the motor in a non-excitation (free) state. It is used when turning the motor shaft externally or when positioning manually. This signal clears the deviation counter.

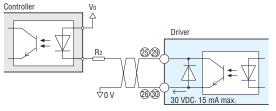
♦ Resolution Select (×10) Input Signal Pin No. ③, ③

This controller power source offers a choice of either 5 VDC or 24 VDC. Inputting this signal when 1000 P/R or 500 P/R is selected as resolution via the function switch will increase the resolution ten-times to 10000 P/R or 5000 P/R.

Note:

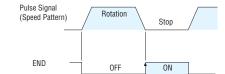
While the resolution select switch is set to 10000 P/R or 5000 P/R, input of this signal will not change the resolution.

◇Alarm Clear (ACL) Input Signal Pin No.②, ②


This controller power source offers a choice of either 5 VDC or 24 VDC. This signal is used for canceling the alarm without turning off power to the driver when a protection circuit has been activated.

The following alarm cannot be cleared. To cancel the alarm, first resolve the cause and check for safety, and then turn power on again.

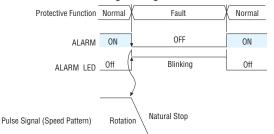
· EEPROM data error · System error


Position Completion (END) Output Signal Alarm (ALARM) Output Signal

Output Circuit and Sample Connection

♦ Position Completion (END) Output Signal Pin No. 29, 30

Circuit for use with 30 VDC, 15 mA maximum. This signal is output at the photocoupler ON state when positioning is completed. This signal is output when the rotor position is less than $\pm 1.8^{\circ}$ from the command position, approximately 2 ms after the pulse input stops.

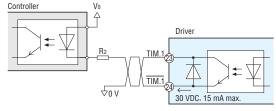


Features

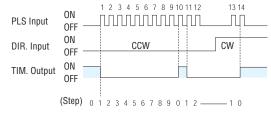
How to Read Specifications and Characteristics Accessories Stepping Motor Controllers

◇Alarm (ALARM) Output Signal Pin No.25, 26

Circuits for use with 30 VDC, 15 mA maximum. The photocoupler turns OFF when one of the driver's protection circuits has been activated. When an abnormality such as an overload or over current is detected, the alarm signal will output, the ALARM indicator blinks. and the motor stops (non-excitation state). To cancel the alarm, first resolve the cause and check for safety, and then input an Alarm Clear (ACL) signal or reset power. Once power has been turned off, wait at least 5 seconds before turning it on again.



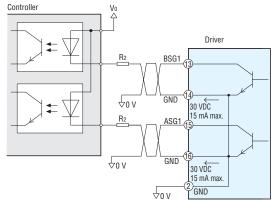
Note:


The alarm output uses positive logic (Normally Closed), all other outputs use negative logic (Normally Open).

Excitation Timing Signal (TIM.) Output Signal

Output Circuit and Sample Connection

Circuits for use with 30 VDC, 15 mA maximum. When the Excitation Timing signal is output, the transistor turns ON. This signal can be used to detect the home position with greater precision. This signal is output 50 times per motor shaft revolution.



Note:

A precise timing signal cannot be obtained when the speed of the pulse input frequency is over 500 Hz.

Quadrature (ASG1/BSG1) Output Signal

Output Circuit and Sample Connection

Circuits for use with 30 VDC, 15 mA maximum. A counter or similar device can be connected to monitor the position of the motor. The pulse resolution is the same as the motor resolution at the time of power-on.

[Example: Resolution select switch (1000 P/R) \rightarrow Output pulse number for each motor revolution (1000).]

The phase difference between A and B is 90° electrical.

Notes:

- The pulse output accuracy is, regardless of resolution, within ±0.36° (repetition accuracy: within $\pm 0.09^{\circ}$).
- These signals are only for position verification when the motor has stopped. There is a 1 ms (maximum) time lag between real rotor motion and the output signals.

Pulse Waveform Characteristics

(Clockwise Rotation of Motor)

List of Motor and Driver Combinations

Туре	Package Model	Motor Model	Driver Model	
Standard Type	ASC34AK	ASM34AK	ASD10A-K	
	ASC36AK	ASM36AK	ASD10B-K	
	ASC46 K	ASM46□K	ASD18A-K	
	ASC66 K	ASM66⊡K	ASD36A-K	
	ASC34AK-T7.2	ASM34AK-T7.2		
	ASC34AK-T10	ASM34AK-T10	ASD10C-K	
	ASC34AK-T20	ASM34AK-T20	ASDIOCIK	
	ASC34AK-T30	ASM34AK-T30	1	
	ASC46 K-T3.6	ASM46□K-T3.6		
	ASC46 K-T7.2	ASM46 K-T7.2	ASD18B-K	
	ASC46 K-T10	ASM46_K-T10		
TH Geared Type	ASC46 K-T20	ASM46 ^K -T20		
	ASC46 K-T30	ASM46 K-T30		
	ASC66 K-T3.6	ASM660K-T3.6		
	ASC66 K-T7.2	ASM66 K-T7.2		
	ASC66 K-T10	ASM660K-T10	ASD36B-K	
	ASC66 K-T20	ASM66 K-T20		
	ASC66 K-T30	ASM66 K-T30	1	

Model names for motor and driver combinations are shown below.

Туре	Type Package Model		Driver Model	
PN Geared Type	ASC34AK-N5	ASM34AK-N5	ASD10A-K	
	ASC34AK-N7.2	ASM34AK-N7.2		
	ASC34AK-N10	ASM34AK-N10		
	ASC46 K-N7.2	ASM46_K-N7.2		
	ASC46 K-N10	ASM46□K-N10	ASD18A-K	
	ASC66 K-N5	ASM66□K-N5	ASD36A-K	
	ASC66 K-N7.2	ASM66□K-N7.2		
	ASC66 K-N10	ASM66□K-N10		
	ASC66 K-N25 ASM66 K-N			
	ASC66 K-N36	ASM66□K-N36	ASD36B-K	
	ASC66 K-N50	ASM66□K-N50]	
	ASC34AK-H50	ASM34AK-H50	ASD10C-K	
	ASC34AK-H100	ASM34AK-H100	ASDIUC-K	
Harmonic Geared Type	ASC46 K-H50	ASM46 ^K -H50	ASD18A-K	
	ASC46 K-H100	ASM46 K-H100		
	ASC66 K-H50	ASM66 K-H50	ASD36B-K	
	ASC66 K-H100	ASM66□K-H100	ASDSOD-K	

•Enter A (standard) or M (electromagnetic brake) in the box (
) within the model name.

 \blacksquare Enter A (standard) or M (electromagnetic brake) in the box ([]) within the model name.

Controllers

	Pulco Input	Standard	h	AS66A E	AS66A E-N7.2			
			a gnetic Brake		AS66M E-N7.2			
Model		0			AS66A EP-N7.2			
	Built-In Controlle Package Aaximum Holding Torque Rotor Inertia Backlash Permissible Speed Range Bear Ratio Resolution* ² Resolution Permissible Torque Aaximum Torque* ³ Voltage-Frequen ower ource Maximum Input Current A		a gnetic Brake					
Maximum Ho	0		m (oz-in)	1.2 (170)	4 (560)			
Rotor Inertia	<u> </u>		¹¹ (02 in) ² (0z-in ²)		564×10 ⁻⁷ (3.1)]*1			
Backlash	Backlash a		(degrees)	-	2 (0.034°)			
Angle Error		c minute	<u> </u>	_	5 (0.084°)			
			r/min	_	0~416			
Gear Ratio				_	7.2:1			
Resolution*2	Resolution*2 Resolutio		1000 P/R	0.36°/Pulse	0.05°/Pulse			
Permissible Torque		N	·m (lb-in)	3.5 (30)	4 (35)			
Maximum Torque*3		N	∙m (lb-in)	7 (61)	9 (79)			
				Single-Phase 100-115 VAC	-15%~+10% 50/60 Hz			
	Voltage-Frequence	су		Single-Phase 200-230 VAC	$-15\% \sim +10\%$ 50/60 Hz			
Power				Three-Phase 200-230 VAC	$-15\% \sim +10\%$ 50/60 Hz			
Source	Movimum Input	Single-Phase 100-115 VAC		5				
		Single-Phase 200-230 VAC		3				
	ounonen	Three-Phase	200-230 VAC	1.5				
		Туре		Active when power is off				
Flectromagn	atic Brake*4	Power Su	ipply Input	24 VDC±5%				
Liectionagin	SUC DIAKE	Power Con	sumption W	6				
		Excitation	Current A	0.1	25			
)	Static Friction To	rque N∙	m (oz-in)	0.6 (85)	2 (17.7)			
Mass		Motor	kg (lb.)	0.85 (1.9) [1.1 (2.4)]*1	1.5 (13.2) [1.75 (15.4)]			
ivid55		Driver	kg (lb.)	0.8 ((1.8)			
	Motor			2	11			
Dimension No.	Driver	Pulse Inpi	ut	1	6			
	DIIVEI	Built-In Co	ontroller	1	7			

The square box in the model name will contain one of the following letters to indicate the power supply voltage: A (Single-Phase 100-115 VAC), C (Single-Phase 200-230 VAC) or S (Three-Phase 200-230 VAC).

*1 The values inside the brackets [] represent the specification for the electromagnetic brake type.

*2 Pulse Input Package: The resolution can be set to any one of 500 P/R, 1000 P/R, 5000 P/R, or 10000

P/R with the resolution select switch or resolution select switching signals. Resolution Select Switch → Page 36

Built-In Controller Package: The resolution can be set from 500 P/R to 10000 P/R by setting parameters. *3 The value of Maximum Torque is for gear. For output torque for geared motor, refer to the Speed - Torque Characteristics.

*4 The electromagnetic brakes are for holding the position when the power is off. They cannot be used for complicated braking. Also, a separate 24 VDC± 5%, 0.3 A minimum power supply is required for the electromagnetic brakes.

Note:

• Direction of rotation of the motor shaft and that of the gear output shaft are the same. (PN geared type)

1) Maximum Holding Torque

The holding torque is the maximum holding power (torque) the stepping motor has when power (rated current) is being supplied but the motor is not rotating (with consideration given to the permissible strength of the gear when applicable). At motor standstill, the driver's "Automatic Current Cutback" function reduces the maximum holding torque by approximately 50%.

2 Rotor Inertia

This refers to the inertia of rotor inside the motor. This is necessary when the required torque (acceleration torque) for the motor needs is calculated.

3 Backlash

The play of gear output shaft when the motor shaft is fixed. When positioning in bi-direction, the positioning accuracy is affected.

(4) Angle Error (PN Geared Type only)

Angle error is the difference between the theoretical angle of rotation of the output shaft, as calculated from the input pulse count, and actual angle of rotation.

5 Permissible Speed Range

This is the rotation speed that the motor can be operated at with the gear output shaft.

6Gear Ratio

This is the ratio in rotation speed between the input speed from the motor and the speed of the gear output shaft. For example, the gear ratio 1:10 is that when the input speed from the motor is 10 r/min, the gear output shaft is 1 r/min.

⑦Resolution

Resolution is the angular distance (in degrees) that the motor moves at the input of one pulse from the driver. It differs depending on the motor structure and excitation mode.

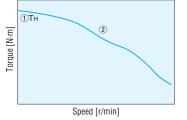
8 Permissible Torque

The permissible torque represents the torque value limited by the mechanical strength of the gear when operated at a constant speed. For the types excluding **PN** and Harmonic geared type, the total torque including accelerati on/deceleration torque should not exceed this value.

(9) Maximum Torque (PN Geared, Harmonic Geared Type only)

This is the maximum torque that can be used instantaneously (for a short time). During acceleration/ deceleration, the motor can be operated up to this value.

10Power Source


The current value of the power input is the maximum input current value. (The input current varies according to the rotation speed.)

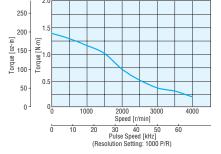
①Static Friction Torque

The electromagnetic brake specifications. This is the maximum holding torque at which the electromagnetic brake can hold the position.

How to Read Speed – Torque Characteristics

The graph below is the characteristics that indicate the relationship between the speed and torque when a stepping motor is driven. The required speed and torque is always used when selecting a stepping motor. On the graph, the horizontal axis expresses the speed at motor output shaft while the vertical axis expresses the torque.

The speed-torque characteristics are determined by the motor and driver, so they vary greatly based upon the type of the driver used.

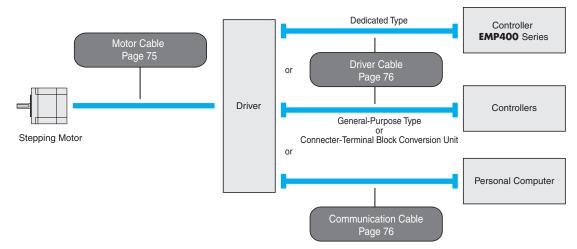

1) Maximum Holding Torque

The holding torque is the maximum holding power (torque) the stepping motor has when power is being supplied but the motor shaft is not rotating (rated current). At motor standstill, the driver's "Automatic Current Cutback" function reduces the maximum holding torque by approximately 50%.

2 Pullout Torque

Pullout torque is the maximum torque that can be output at a given speed. When selecting a motor, be sure the required torque falls within this curve.

The following figure shows the speed–torque characteristics of the \mathcal{O}_{STEP} AS Series AS66AAE.


Pay attention to heat dissipation from the motor and driver. The motor will produce a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor case under 100°C (212°F). [Under 75°C (167°F) is required to comply with UL or CSA standards.]

In order to prevent fatigue of the gear grease in the harmonic gear, keep the temperature of the gear case under 70°C (158°F).

Cables

Various cables provide convenient connection between a motor, driver and controller.

Type of Cables

Cable Selection Table

Use these cables to extend the wiring length between the \mathcal{X}_{STEP} motor and driver or connect the standard IP65 rated motor and driver. Select an appropriate type of cable according to the motor frame size and additional function.

AS Series Pulse Input Package (Standard, TH Geared, PN Geared, Harmonic Geared Type) AS Series Built-In Controller Package (Standard, TH Geared, PN Geared, Harmonic Geared Type) ASC Series (Standard, TH Geared, PN Geared, Harmonic Geared Type)

Mc	otor	Cable Name								
Motor Frame Size	Tupo	1 Exten	sion Cable	2 Flexible Extension Cable						
MOLOT FTAILle Size	Туре	For Standard Motor	For Electromagnetic Brake Motor	For Standard Motor	For Electromagnetic Brake Motor					
28 mm (1.10 in.)	Standard*	•	-	•	-					
42 mm (1 65 in)	Standard*	•	-	•	-					
42 mm (1.65 in.)	Electromagnetic Brake*	•	-	•	-					
60 mm (2.26 in)	Standard*	•	-	•	-					
60 mm (2.36 in.)	Electromagnetic Brake	-		-	•					
85 mm (3.35 in.)	Standard*	•	-	•	-					
[Geared Type: 90 mm (3.54 in.)]	Electromagnetic Brake	-		-	•					

Notes:

•As for the products indicated by *, neither an extension cable nor flexible extension cable is required if the wiring distance between the motor and driver is 0.4 m (1.31 ft.) or shorter [or 0.15 m (0.5 ft.) or shorter : **ASC34** and **ASC36** types].

Any motor with an electromagnetic brake cannot be driven without an extension cable for electromagnetic brake motor. Take note, however, for electromagnetic brake type with motor frame size 42 mm (\Box 1.65 in.), use a standard extension cable.

AS Series Pulse Input Package (Standard Type IP65 Rated Motor)

Mc	otor	Cable Name						
Motor Frame Size	Туре	Motor Cable for IP65 Rated Motor						
	туре	3 Extension Cable	4 Flexible Extension Cable					
60 mm (2.36 in.)	Standard	•	•					
85 mm (3.35 in.)	Standard	•	•					

Note:

Always use the motor cable for IP65 rated motor (sold separately) for connection between the IP65 rated motor and the driver.

Motor Cables (RoHS)

1 Extension Cables

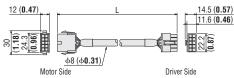
These extension cables are convenient when using the *Xstep* motor and driver more than 0.4 m (1.31 ft.) apart from each other.

For Electromagnetic Brake Motor

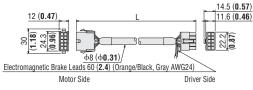
Product Line

For Standard Motor

Model	Length L m (ft.)	Model	Length L m (ft.)
CC01AIP	1 (3.3)	CC01AIPM	1 (3.3)
CC02AIP	2 (6.6)	CC02AIPM	2 (6.6)
CC03AIP	3 (9.8)	CC03AIPM	3 (9.8)
CC05AIP	5 (16.4)	CC05AIPM	5 (16.4)
CC07AIP	7 (23)	CC07AIPM	7 (23)
CC10AIP	10 (32.8)	CC10AIPM	10 (32.8)
CC15AIP	15 (49.2)	CC15AIPM	15 (49.2)
CC20AIP	20 (65.6)	CC20AIPM	20 (65.6)


Notes

●Electromagnetic brake models must use an extension cable for an electromagnetic brake motor. But for electromagnetic brake motor with motor frame size □42 mm (□1.65 in.), use an extension cable for standard motor.

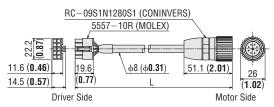

•ASC Series cannot use extension cable with 15 m (49.2 ft.), 20 m (65.6 ft.) length.

Dimensions Unit = mm (inch)

For Standard Motor

For Electromagnetic Brake Motor

Motor Cable for IP65 Rated Motor (RoHS)


This motor cable must be used for connection between the IP65 rated motor and the driver. Any IP65 rated motor cannot be driven without this cable. One end of the cable connects to the metal connector on the motor, while the other end connects to the driver.

Use a flexible extension cable if the motor is installed on a moving part and its cable will be flexed repeatedly. 3 Extension Cables for IP65 Rated Motor
4 Flexible Extension Cables for IP65

Product Line

Model	Length L m (ft.)	Model	Length L m (ft.)
CC01AST	1 (3.3)	CC07AST	7 (23)
CC02AST	2 (6.6)	CC10AST	10 (32.8)
CC03AST	3 (9.8)	CC15AST	15 (49.2)
CC05AST	5 (16.4)	CC20AST	20 (65.6)

Dimensions Unit = mm (inch)

2 Flexible Extension Cables

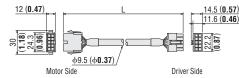
This flexible extension cable is used between *Q_step* motors and dedicated drivers. We recommend this cable when the motor is installed on a moving section and the cable is repeatedly bent and extended.

Product Line

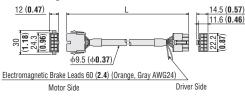
For Standard Motor

Model	Length L m (ft.)
CC01SAR	1 (3.3)
CC02SAR	2 (6.6)
CC03SAR	3 (9.8)
CC05SAR	5 (16.4)
CC07SAR	7 (23)
CC10SAR	10 (32.8)

For Electromagnetic Brake Motor


	lagnette Brake int
Model	Length L m (ft.)
CC01SARM2	1 (3.3)
CC02SARM2	2 (6.6)
CC03SARM2	3 (9.8)
CC05SARM2	5 (16.4)
CC07SARM2	7 (23)
CC10SARM2	10 (32.8)

Note:


●For electromagnetic brake motor with motor frame size □42 mm (□1.65 in.), use a flexible extension cable for standard motor.

Dimensions Unit = mm (inch)

For Standard Motor


For Electromagnetic Brake Motor

Flexible Extension Cables for IP65 Rated Motor Product Line

Model	Length L m (ft.)	Model	Length L m (ft.)
CC01SAR2	1 (3.3)	CC07SAR2	7 (23)
CC02SAR2	2 (6.6)	CC10SAR2	10 (32.8)
CC03SAR2	3 (9.8)		·
CC05SAR2	5 (16.4)		

Dimensions Unit = mm (inch)

Line-up

Driver Cables (RoHS)

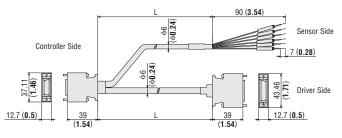
These shielded cables are convenient for connecting \mathcal{X}_{STEP} Series drivers to controllers. Dedicated type (equipped with the connector for the **EMP** Series controller) and general-purpose type are available.

Dedicated Type (Conforms to EMP Series)

One end of the cable is a half-pitch connector that snaps into the driver for α -srep Series. The other end of the cable is equipped with the connector for the **EMP** Series controller.

Note

Note that as the length of the pulse signal line increases, the maximum transmission frequency decreases.


Product Line

Model	Applicable Series	Length L (m)
CC01EMP4	AS Series Pulse Input Package	1
CC02EMP4	ASC Series	2

Note:

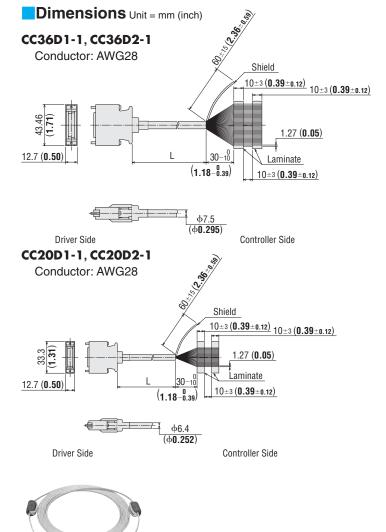
The alarm clear signal of the AS and ASC Series cannot be used with the EMP400 Series controller.

Dimensions (Unit = mm)

General-Purpose Type

This is a shielded cable equipped with, at one end of the cable, the half-pitch connector that snaps into the driver for \mathcal{O}_{STEP} Series.

Notes:


Note that as the length of the pulse signal line increases, the maximum transmission frequency decreases.

Install a connector that matches the controller you are using to the other end of the cable.

Product Line

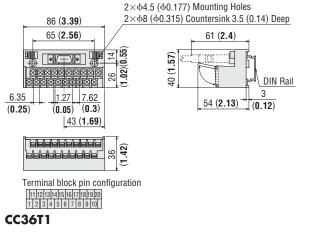
Cable Length: 5 m (16.4 ft.)

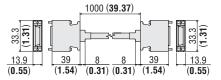
Model	Applicable Series	Length L m (ft.)				
CC36D1-1	AS Series Built-In Controller Package					
CC36D2-1	2 (6.6)					
CC20D1-1	AC Carias Built In Controllar Baskaga	1 (3.3)				
CC20D2-1	AS Series Built-In Controller Package	2 (6.6)				

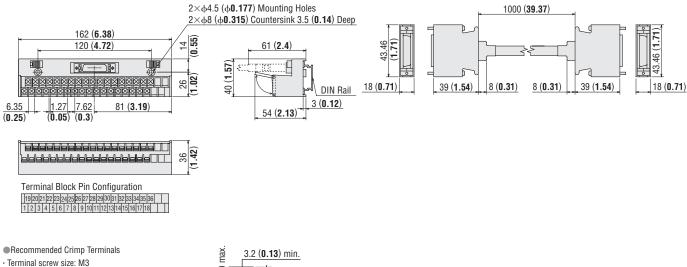
Communication Cable FC04W5 (RoHS)

This cable is used to connect a personal computer and built-in controller (stored program) driver through an RS232 connection.

Connector-Terminal Block Conversion Unit (RoHS)




Product Line


Model	Applicable Series	Length L m (ft.)
CC20T1	AS Built-In Controller Package	1 (3.3)
CC36T1	AS Series Pulse Input Package AS Series Built-In Controller Package ASC Series	1 (3.3)

Dimensions Unit = mm (inch)

CC20T1

- Tightening torque: 1.2 N·m (170 oz-in)
- Applicable minimum lead wire: AWG22

A conversion unit that connects a driver to a host controller using a terminal block.

With a signal name plate for easy, one-glance identification of driver signal names.
 DIN-rail mountable

· Cable length: 1 m (3.3 ft.)

List of Motor and Driver Combinations

How to Read Specifications and Characteristics

Flexible Couplings (RHS)

A flexible coupling ideal for your motor is available. Once you have decided on a motor and gear, you can select the recommended coupling easily. All motor shaft diameters of stepping motor packages are available (including geared motors).

Features of MCS Couplings

This three-piece coupling adopts an aluminum alloy hub and a resin spider. The simple construction ensures that the high torque generated by a geared motor can be transmitted reliably. The proper elasticity of the spider suppresses motor vibration.

High accuracy (usable for geared motor) has been realized.
A spider (material: polyurethane) controls the vibration generated by the motor.
No backlash.

Coupling Selection Table

Applicab	le Motor		Motor Shaft	_	Driven Shaft Diameter mm (in.)												
AS Series	ASC Series	- Gear Ratio	Diameter mm (in.)	Туре	ф4 (ф0.1575)	ф5 (ф0.1969)	ф6 (ф0.2362)	ф6.35 (ф0.2500)	ф8 (ф0.3150)	ф10 (ф0.3937)	ф12 (ф0.4724)		ф15 (ф0.5906)	ф16 (ф0.6299)	ф18 (ф0.7087)	ф20 (ф0.7874)	ф25 (ф0.9843)
AS46□A AS46□AP	ASC34AK ASC36AK ASC46□K	_	ф5 (ф0.1969)	MCS14	•	•	•										
_	ASC34AK-T	7.2, 10, 20, 30															
AS46 A-T	ASC46□K-T	3.6, 7.2, 10	ф6 (ф0.2362)	MCS20		•	•		•	•							
	ASC34AK-N	5, 7.2, 10	, ,														<u> </u>
AS46 A-T	ASC46□K-T■	20, 30	ф6 (ф0.2362)				•		•	•							
AS66 E AS66A T AS66 EP AS66A TP AS69 E AS69A T AS69 EP AS69A TP	ASC66□K	_	ф8 (ф0.3150)				•	•	•	•	•						
AS66 E-T AS66 EP-T	ASC66□K-T	3.6, 7.2		MCS30													
	ASC34AK-H	50, 100															<u> </u>
AS46□A-N■ AS46□AP-N■	ASC46□K-N	7.2, 10	ф10 (ф0.3937)				•		•	•	•	•					
AS98 E AS98A T AS98 EP AS98A TP AS911A E AS911A T AS911A EP AS911A TP	_	_	ф14 (ф0.5512)							•	•	•		•			
AS66 E-T AS66 EP-T	ASC66□K-T	10, 20, 30	ф8 (ф0.3150)						•	•	•		•				
AS46□A2-H ■ AS46□AP2-H ■	ASC46□K-H	50, 100	ф10 (ф0.3937)	MCS40					•	•	•		•				
AS66 E-N AS66 EP-N	ASC66□K-N	5, 7.2	ф12 (ф0.4724)						•	•	•		•				
AS98 E-T AS98 EP-T	-	3.6, 7.2, 10, 20, 30															
AS66 E-N AS66 EP-N	ASC66□K-N■	10, 25, 36, 50	ф12 (ф0.4724)	MCS55							•		•	•			
AS66 E-H AS66 EP-H	ASC66□K-H	50, 100															
AS98 E-N AS98 EP-N	-	5, 7.2, 10, 25, 36, 50	ф18	MCCAF													
AS98 E-H AS98 EP-H	-	50, 100	(ф0.7087)	MCS65													•

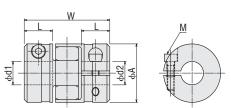
NEW

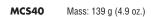
●Enter A (standard) or M (electromagnetic brake) in the box (□) within the model name. Enter the power supply voltage A, C or S in the box (□) within the model name.

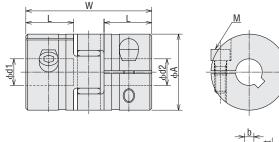
Enter the gear ratio in the box (\Box) within the model name.

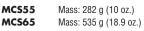
1	MCS Couplings
2	Outer Diameter of Coupling
3	Inner Diameter d1 (Smaller Side) [F04 represents ϕ 6.35 mm (ϕ 0.25 in.)]
4	Inner Diameter d2 (Larger Side) [F04 represents ϕ 6.35 mm (ϕ 0.25 in.)]

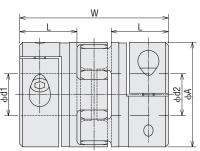
Specifications

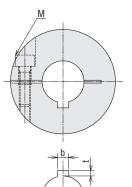

				D.										
	Outer	Length	Axis Hole	Axis Hole	ensions Key Slot Tolerance	L	Screw	Normal Torque	Mass	Inertia	Static Torsion Spring	Permissible Eccentricity	Permissible Declination	Permissible End Play
Model	Diameter _{\$\phi} A mm (in.)	W mm (in.)	Diameter d1 H7 mm (in.)	Diameter d2 H7 mm (in.)	b/t mm (in.)	mm (in.)	Used M	N•m (Ib-in)	g (oz.)	kg•m² (oz-in²)	Constant N•m/rad (Ib-in/rad)	mm (in.)	deg	mm (in.)
MCS140405 MCS140505 MCS140506 MCS140606	14 (0.55)	22 (0.87)	4 (0.1575) 5 (0.1969) 5 (0.1969) 6 (0.2362)	5 (0.1969) 5 (0.1969) 6 (0.2362) 6 (0.2362)	_	7 (0.28)	M2	2.0 (17.7)	6.7 (0.23)	0.184×10 ⁻⁶ (0.01)	22.9 (200)	0.06 (0.0024)	0.9	$+0.6 \\ 0 \\ (+0.024) \\ 0 \end{pmatrix}$
MCS200506 MCS200606 MCS2006F04 MCS200608 MCS200610	20 (0.79)	30 (1.18)	5 (0.1969) 6 (0.2362) 6 (0.2362) 6 (0.2362) 6 (0.2362) 6 (0.2362)	6 (0.2362) 6 (0.2362) 6.35 (0.2500) 8 (0.3150) 10 (0.3937)	_	10 (0.39)	M2.5	5.0 (44)	19.8 (0.69)	1.059×10 ⁻⁶ (0.06)	51.6 (450)	0.08 (0.0031)	0.9	$+0.8 \\ 0 \\ (+0.031) \\ 0 \end{pmatrix}$
MCS300606 MCS3006F04 MCS300610 MCS30F0408 MCS30F0410 MCS300808 MCS300810 MCS300812 MCS301012 MCS301012 MCS301014 MCS301214 MCS301414 MCS301416	30 (1.18)	35 (1.38)	6 (0.2362) 6 (0.2362) 6 (0.2362) 6 (0.2362) 6 (0.2362) 6 (0.2362) 6 (0.2500) 8 (0.3150) 8 (0.3150) 8 (0.3150) 10 (0.3937) 10 (0.3937) 10 (0.3937) 12 (0.4724) 14 (0.5512)	6 (0.2362) 6.35 (0.2500) 8 (0.3150) 10 (0.3937) 8 (0.3150) 10 (0.3937) 8 (0.3150) 10 (0.3937) 12 (0.4724) 10 (0.3937) 12 (0.4724) 14 (0.5512) 14 (0.5512) 14 (0.5512) 16 (0.6299)	_	11 (0.43)	M3	12.5 (110)	44.6 (1.57)	6.057×10 ⁻⁶ (0.33)	171.9 (1520)	0.09 (0.0035)	0.9	+ 1.0 0 (+0.039) 0
MCS400808 MCS400810 MCS400812 MCS400815 MCS401010 MCS401012 MCS401015 MCS401212 MCS401215	40 (1.57)	66 (2.60)	8 (0.3150) 8 (0.3150) 8 (0.3150) 8 (0.3150) 10 (0.3937) 10 (0.3937) 10 (0.3937) 12 (0.4724) 12 (0.4724)	8 (0.3150) 10 (0.3937) 12 (0.4724) 15 (0.5906) 10 (0.3937) 12 (0.4724) 15 (0.5906) 12 (0.4724) 15 (0.5906)	$\begin{array}{c} \varphi(4,0.3150) \ b: 2\pm 0.0125 \ (0.0787\pm 0.0005) \\ t: 1^{+1} (0.039^{+0.005}) \\ \varphi(10,0.397) \ b: 3\pm 0.0125 \ (0.1181\pm 0.0005) \\ t: 1.4^{+1} (1.0055^{+0.0005}) \\ \varphi(10,0.397) \ b: 3\pm 0.0125 \ (0.1181\pm 0.0005) \\ t: 1.4^{+1} (1.0055^{+0.0005}) \\ \varphi(10,0.4724) \ b: 4\pm 0.015 \ (0.1575\pm 0.0006) \\ t: 1.8^{+1} \ (0.071^{+0.007}) \\ \varphi(14,0.5512) \ b: 5\pm 0.015 \ (0.198\pm 0.0005) \\ t: 2.2^{+1} \ (0.019^{+0.0005}) \\ \varphi(15,0.005) \ b: 5\pm 0.015 \ (0.1198\pm 0.0005) \\ \varphi(15,0.005) \ b: 5\pm 0.015 \ (0.1198\pm 0.0005) \\ \varphi(15,0.005) \ b: 5\pm 0.015 \ (0.1198\pm 0.0005) \\ \varphi(15,0.005) \ b: 5\pm 0.015 \ (0.1198\pm 0.0005) \\ \varphi(15,0.005) \ b: 5\pm 0.015 \ (0.1198\pm 0.0005) \\ \varphi(15,0.005) \ b: 5\pm 0.015 \ (0.1198\pm 0.0005) \\ \varphi(15,0.005) \ b: 5\pm 0.015 \ (0.1198\pm 0.0005) \\ \varphi(15,0.005) \ b: 5\pm 0.015 \ (0.1198\pm 0.0005) \\ \varphi(15,0.005) \ b: 5\pm 0.015 \ (0.1198\pm 0.0005) \\ \varphi(15,0.005) \ b: 5\pm 0.015 \ (0.1198\pm 0.0005) \\ \varphi(15,0.005) \ b: 5\pm 0.015 \ (0.1198\pm 0.0005) \\ \varphi(15,0.005) \ b: 5\pm 0.015 \ (0.1198\pm 0.0005) \\ \varphi(15,0.005) \ b: 5\pm 0.015 \ (0.1198\pm 0.0005) \\ \varphi(15,0.005) \ b: 5\pm 0.015 \ (0.1198\pm 0.0005) \\ \varphi(15,0.005) \ b: 5\pm 0.015 \ (0.1198\pm 0.0005) \\ \varphi(15,0.005) \ b: 5\pm 0.015 \ (0.1198\pm 0.0005) \\ \varphi(15,0.005) \ b: 5\pm 0.015 \ (0.1198\pm 0.0005) \\ \varphi(15,0.005) \ b: 5\pm 0.015 \ (0.1198\pm 0.0005) \\ \varphi(15,0.005) \ b: 5\pm 0.015 \ (0.1198\pm 0.0005) \\ \varphi(15,0.005) \ b: 5\pm 0.015 \ (0.1198\pm 0.005) \\ \varphi(15,0.005) \ b: 5\pm 0.015 \ (0.1198\pm 0.005) \\ \varphi(15,0.005) \ b: 5\pm 0.015 \ (0.1188\pm 0.005) \\ \varphi(15,0.005) \ b: 5\pm 0.015 \ (0.1188\pm 0.005) \\ \varphi(15,0.005) \ b: 5\pm 0.015 \ (0.1188\pm 0.005) \\ \varphi(15,0.005) \ b: 5\pm 0.015 \ (0.1188\pm 0.005) \\ \varphi(15,0.005) \ b: 5\pm 0.015 \ (0.1188\pm 0.005) \\ \varphi(15,0.005) \ b: 5\pm 0.015 \ (0.1188\pm 0.005) \\ \varphi(15,0.005) \ b: 5\pm 0.015 \ (0.1188\pm 0.005) \\ \varphi(15,0.005) \ b: 5\pm 0.015 \ (0.1188\pm 0.005) \\ \varphi(15,0.005) \ b: 5\pm 0.015 \ (0.1188\pm 0.005) \\ \varphi(15,0.005) \ b: 5\pm 0.015 \ (0.1188\pm 0.005) \\ \varphi(15,0.005) \ b: 5\pm 0.015 \ (0.1188\pm 0.005) \\ \varphi(15,0.005) \ b: 5\pm 0.015 \ (0.1188\pm 0.005) \\ \varphi(15,0.005) \ b: 5\pm 0.015 \ (0.1188\pm 0.005) \\ \varphi(15,0.005) \ b: 5\pm 0.015 \ (0.1188\pm 0.005) \\ \varphi(15,0.00$	25 (0.98)	M6	17.0 (150)	139 (4.9)	42.29×10 ⁻⁶ (2.3)	859.5 (7600)	0.06 (0.0024)	0.9	+1.2 0 (+0.047) 0
MCS551212 MCS551214 MCS551215 MCS551216	55 (2.17)	78 (3.07)	12 (0.4724) 12 (0.4724) 12 (0.4724) 12 (0.4724) 12 (0.4724)	12 (0.4724) 14 (0.5512) 15 (0.5906) 16 (0.6299)	$\begin{array}{c} t:23\overset{+}{_{-}}^{+1}(0.091\overset{+}{_{-}}^{-0.093})\\ \phi 16\ (\phi 0.6299\ b:5\pm0.015\ (0.1969\pm0.0006)\\ t:23\overset{+}{_{-}}^{+1}(0.091\overset{+}{_{-}}^{-0.039})\\ \phi 18\ (\phi 0.7078\ b:6\pm0.015\ (0.2362\pm0.0006)\\ t:28\overset{+}{_{-}}^{+1}(0.110\overset{+}{_{-}}^{-0.093})\end{array}$	30 (1.18)	M6	60.0 (530)	282 (10)	109.1×10 ⁻⁶ (6)	2063 (18200)	0.1 (0.0039)	0.9	$+1.4 \\ 0 \\ (+0.055) \\ 0 \end{pmatrix}$
MCS651618 MCS651818 MCS651820 MCS651825	65 (2.56)	90 (3.54)	16 (0.6299) 18 (0.7087) 18 (0.7087) 18 (0.7087) 18 (0.7087)	18 (0.7087) 18 (0.7087) 20 (0.7874) 25 (0.9843)	$\begin{array}{c} 1.20 & (4176 & 1) \\ \varphi 20 & (40.7874) & 5.6 \pm 0.015 & (0.2362 \pm 0.0006) \\ & t & :2.87 & (10.110^{+0.003}) \\ \varphi 25 & (60.9843) & 5.8 \pm 0.018 & (0.3150 \pm 0.0007) \\ & t & :3.3 & (^{12}_{+}0.0130^{+0.003}) \\ & t & :3.3 & (^{12}_{+}0.0130^{+0.003}) \end{array}$	35 (1.38)	M8	160 (1410)	535 (18.9)	417.1×10 ⁻⁶ (22.8)	3438 (30000)	0.11 (0.0043)	0.9	$+1.5 \\ 0 \\ (+0.059) \\ 0 \end{pmatrix}$

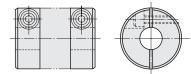

Dimensions


 MCS14
 Mass: 6.7 g (0.23 oz.)


 MCS20
 Mass: 19.8 g (0.69 oz)

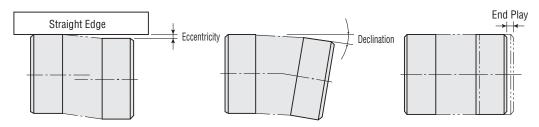

 MCS30
 Mass: 44.6 g (1.57 oz.)





Mounting to a Shaft

Clamp Type


Clamp couplings use the binding force of the screw to compress the shaft hole diameter and thereby fasten the coupling to the shaft. This does not damage the shaft and is easy to mount and remove. The following table shows the screw binding torque. We recommend use of a torque wrench to fasten the coupling.

Туре	MCS14	MCS20	MCS30	MCS40	MCS55	MCS65
Tightening Torque N·m (oz-in)	0.37 (52)	0.76 (107)	1.34 (190)	10.5 (1490)	10.5 (1490)	25 (3550)

Alignment Adjustment

Flexible couplings tolerate misalignment of the axis center and transfer rotational angle and torque, but produce vibration when the permissible value for misalignment is exceeded. This can dramatically shorten the coupling's service life. This requires alignment adjustment. Misalignment of the axis center includes eccentricity (parallel error of both centers), declination (angular error of both centers) and end play (shaft movement in the axial direction). To keep misalignment within the permissible value, always check and adjust the alignment. To increase the service life of the coupling, we recommend keeping misalignment to below 1/3 of the permissible value.

Notes:

When misalignment exceeds the permissible value or excessive torque is applied, the coupling's shape will deform, and service life is shortened.
 When the coupling emits a metallic sound during operation, stop operation immediately and ensure there is no misalignment, axis interference or loose screws.
 When load changes are large, paint the coupling set screw with an adhesive to prevent the coupling screw from loosening.

Motor Mounting Brackets

Motor mounting brackets are convenient for installation and securing a stepping motor and geared stepping motor.

Product Line

Standard Type Material: Aluminum

Material: Aluminum di	e cast
Mounting Bracket Models	Applicable Motor
PAFOP	AS46□A AS46□AP ASC46□K
PALOP	AS46□A AS46□AP ASC46□K
PAL2P-5A	AS66 E AS66A T AS66 EP AS66A TP AS66A TP AS69 E AS69A T AS69 EP AS69A TP
PAL4P-5A	AS98 E AS98A T AS98 EP AS91A E AS911A E AS911A EP AS911A TP

●Enter A (standard) or M (electromagnetic brake) in the box (□) within the model name.

Enter the power supply voltage **A**, **C** or **S** in the box (\Box) within the model name.

The mounting bracket base is built with holes large enough to allow for alignment adjustments in the horizontal direction. These mounting brackets can be perfectly fitted to the pilot of the stepping motors. (except for PALOP)

Note:

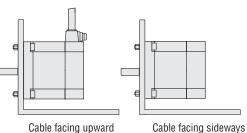
They cannot be used with geared stepping motors.

•Geared Typ Material: Aluminum di	(Delle)
Mounting Bracket Models	Applicable Motor
SOL0B-A	AS46_A-T AS46_AP-T ASC46_K-T
SOL2A-A	AS66 E-T AS66 EP-T ASC66 K-T
SOL5B-A	AS98 E-T AS98 EP-T

●Enter A (standard) or M (electromagnetic brake) in the box (□) within the model name.

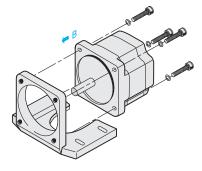
Enter the power supply voltage **A**, **C** or **S** in the box (
) within the model name.

Enter the gear ratio in the box () within the model name.

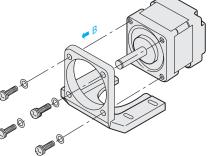

The mounting bracket base is built with holes large enough to allow for alignment adjustments in the horizontal direction. No screws are supplied for installing. Provide appropriate screws separately.

Line-up

AC Input AS Series

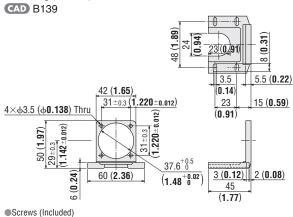

Motor Installation Direction

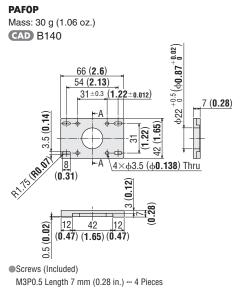
The motor cable comes out at right angles to the motor. Orient the motor so that the cable faces either upward or sideways.


3 PAFOP

Mounting the Motor 1 PAL2P-5A, PAL4P-5A

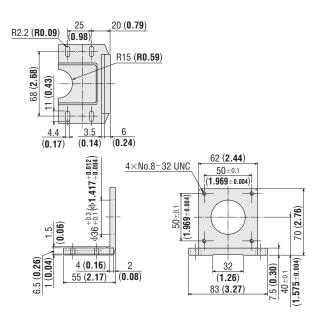
- ①Use the screws provided to secure the motor to the mounting bracket.
- 2 Attach the motor from the direction shown by the arrow (B).


- ①Use the screws provided to secure the motor ①Use the screws provided to secure the motor to the mounting bracket.
 - (No screws are supplied for SOLOB-A, SOL2A-A and SOL5B-A. Provide appropriate screws separately.)
- 2 Attach the motor from the direction shown by the arrow (B).


- to the mounting bracket.
- 2 Attach motor from the direction shown by either arrow (A) or arrow (B).

Dimensions Unit = mm (inch)

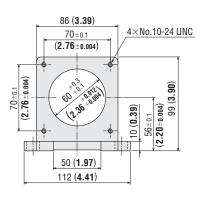
PALOP Mass: 35 g (1.24 oz.)



M3P0.5 Length 10 mm (0.39 in.) - 4 Pieces

PAL2P-5A

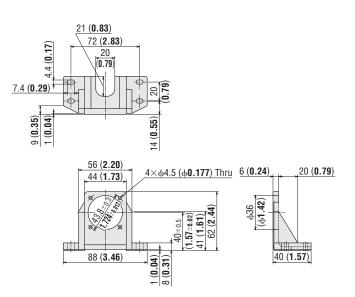
Mass: 110 g (3.9 oz.) CAD B143


Screws (Included) No.8-32 UNC --- 4 Pieces

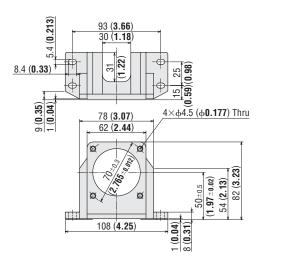
PAL4P-5A

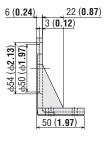
Mass: 250 g (8.8 oz.) CAD B145

80 (**3.15**)

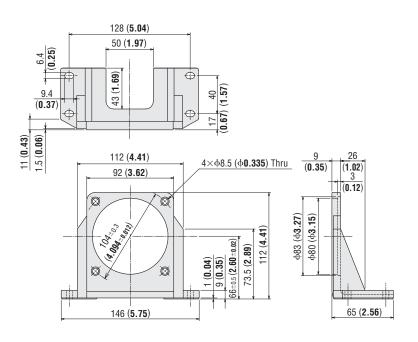


Screws (Included) No.10-24 UNC --- 4 Pieces


SOLOB-A

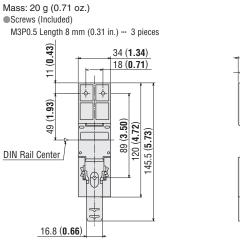

Mass: 85 g (3 oz.)

SOL2A-A


Mass: 120 g (4.2 oz.)

SOL5B-A Mass: 270 g

Mass: 270 g (9.5 oz.)


This installation plate is convenient for installing the driver of *Xstep* AS Series on DIN rails with ease.

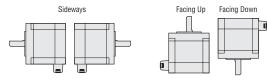
Product Line

Model	Applicable Product
PADP01	AS Series Driver

Dimensions Unit = mm (inch)

PADP01

System Configuration Product Line

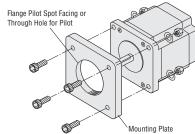

Before Using a Stepping Motor

Motor Installation

Direction of Mounting

Motors can be mounted freely in any direction as shown below. Regardless of how the motor is mounted, take care not to apply an overhung load or thrust load on the shaft.

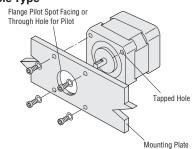
Make sure the cable does not contact the mounting surface causing undesirable force on the cable.


Notes:

Do not disassemble the motors.Do not apply any shock load to the motor.

Mounting Method

Considering heat radiation and vibration isolation as much as possible, mount the motor tightly against a metal surface.


⊘Through Hole Type

Model	Thickness of the Mounting Plate
AS66 E AS66A T AS66 EP AS66A TP ASC66 K AS69 E AS69A T AS69 EP AS69A TP	5 mm (0.2 in.) min.
AS98 E AS98A T AS98 EP AS981A P AS911A E AS911A T AS911A EP AS911A TP	8 mm (0.31 in.) min.
AS98 E-H AS98 E-H	12 mm (0.47 in.) min.

●Enter A (standard) or M (electromagnetic brake) in the box (□) within the model name. Enter the power supply voltage A, C or S in the box (□) within the model name. Enter the gear ratio in the box (□) within the model name.

Applicabl	e Motor	Thickness of the
AS Series	ASC Series	Mounting Plate
AS46□A AS46□AP	ASC34AK ASC36AK ASC46□K ASC34AK-T ASC34AK-N ASC34AK-N	3 mm (0.12 in.) min.
AS46 A-T AS46 AP-T AS46 A-N AS46 A-N AS46 AP-N AS46 A2-H AS46 AP2-H AS66 E-T AS66 EP-T	ASC46_K-T ASC46_K-N ASC46_K-H ASC66_K-T	5 mm (0.20 in.) min.
AS66 E-N AS66 EP-N AS66 E-H AS66 E-H AS66 EP-H AS98 E-T AS98 E-T	ASC66□K-N ASC66□K-H	8 mm (0.31 in.) min.
AS98 E-N AS98 EP-N	_	12 mm (0.47 in.) min.

●Enter A (standard) or M (electromagnetic brake) in the box (□) within the model name. Enter the power supply voltage A, C or S in the box (□) within the model name. Enter the gear ratio in the box (□) within the model name.

Installation Conditions

Install the motor in a location that meets the following conditions, or the product may be damaged.

 Indoors (This product is designed and manufactured to be installed within another device)

Ambient temperature:

 $0^{\circ}C$ to $+50^{\circ}C$ ($+32^{\circ}F \sim +122^{\circ}F$) (nonfreezing)

 $0^\circ C$ to $\,+\,40^\circ C$ (+32°F $\sim\,+\,104^\circ F)$ (nonfreezing): Harmonic geared type

Ambient humidity: 85% or less (noncondensing)

Not exposed to explosive, flammable, or corrosive gas

Not exposed to direct sunlight

Not exposed to dust

Not exposed to water or oil (except for IP65 rated motor)

A place where heat can escape easily

Not exposed to continuous vibration or excessive impact

Notes:

When installing the motor in an enclosed space such as a control box, or somewhere close to a heat-radiating object, vent holes should be used to prevent the motor from overheating.

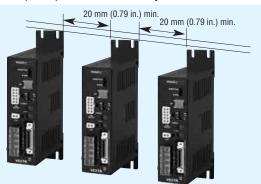
Do not install the motor in a location where a source of vibration will cause the motor to vibrate.

Driver Installation

AC Input Type

◇Installation Direction and Method

Drivers are designed to dissipate heat through natural convection. Install the driver vertically as shown in the photograph.



- Firmly install on a metal plate that has good heat conductivity, such as iron or aluminum 2 mm (0.08 in.) or more in thickness.
- To directly install the driver without using the screws provided, pay particular attention to the length of the screws used for the tapped holes. For AS Series, the use of screw that would penetrate 3 mm (0.12 in.) or more through the surface of the driver may cause damage to the driver.

♦ Using Multiple Axes

When using multiple stepping motor axes, driver temperature rise will cause ambient temperatures to rise. At least 20 mm (0.79 in.) must be allowed between driver units and at least 25 mm (0.98 in.) between drivers and other equipment or structures.

Install a forced-air cooling fan if ambient temperatures exceed 50°C (122°F) [40°C (104°F) for built-in controller].

⊘Installation Conditions

Install the driver in a location that meets the following conditions, or the product may be damaged.

- Indoors (This product is designed and manufactured to be installed within another device)
- Ambient temperature:
- $0^{\circ}C$ to $+50^{\circ}C$ ($+32^{\circ}F \sim +122^{\circ}F$)(nonfreezing): Pulse input driver
- $0^{\circ}C$ to $+40^{\circ}C$ ($+32^{\circ}F \sim +104^{\circ}F$)(nonfreezing):
- Built-in controller driver
- Ambient humidity: 85% or less (noncondensing)
- Not exposed to explosive, flammable, or corrosive gas
- Not exposed to direct sunlight
- Not exposed to dust
- Not exposed to water or oil
- A place where heat can escape easily
- Not exposed to continuous vibration or excessive impact

Notes

- When installing the driver in an enclosed space such as a control box, or somewhere close to a heat-radiating object, vent holes should be used to prevent the driver from overheating.
- Do not install the driver in a location where a source of vibration will cause the driver to vibrate

In situations where drivers are located close to a large noise source such as high frequency welding machines or large electromagnetic switches, take steps to prevent noise interference. either by inserting noise filters or connecting the driver to a separate circuit.

Take care that pieces of conductive material (filings, pins, pieces of wire, etc.) do not enter the drivers

DC Input Type

⊘Installation Direction

Considering heat radiation, install the driver vertically or board side down. Install the driver in a way that the power element side faces up and the aluminum electrolytic capacitor side faces down. Horizontal Installation

Vertical Installation

Note:

The driver can generate a great deal of heat depending on the operating conditions. Make sure that the temperature of the heat sink does not exceed 80°C (176°F). [When the temperature of the heat sink exceeds 80°C (176°F), forced cooling is required.]

◇Installation Conditions

Install the driver in a location that meets the following conditions. or the product may be damaged.

- Indoors (This product is designed and manufactured to be installed within another device)
- Ambient temperature: 0°C to +40°C (+32°F~+104°F) (nonfreezing)
- Ambient humidity: 85% or less (noncondensing)
- Not exposed to explosive, flammable, or corrosive gas Not exposed to direct sunlight
- Not exposed to dust
- Not exposed to water or oil
- A place where heat can escape easily
- Not exposed to continuous vibration or excessive impact

- When installing the driver in an enclosed space such as a control box, or somewhere close to a heat-radiating object, vent holes should be used to prevent the driver from overheating. Do not install the driver in a location where a source of vibration will cause the driver to
- vibrate In situations where drivers are located close to a large noise source such as high frequency welding machines or large electromagnetic switches, take steps to prevent noise interference, either by inserting noise filters or connecting the driver to a separate circuit.
- Take care that pieces of conductive material (filings, pins, pieces of wire, etc.) do not enter the drivers.

Line-up

Functions

System Configuration

Product Line

Characteristics

AC Input AS Series

Specifications and Characteristics

Accessories

Before Using a Stepping Motor

Controllers

Controllers

Types of Controllers

We offer an extensive range of controllers that are designed with Oriental Motor's superior technologies to achieve various operations at will.

Choose the optimal controller to match your application.

		Stored Program Controller	Stored Data Controller
		EMP400 Series	SG8030J
	Number of Programs	32	-
	Capacity	1000 commands	-
Program	Input Method	Command input via terminal program	-
	Number of Control Tasks	Main: 1, Sub: 0	-
Positioning Data	Number of Settings	_	4 steps Sequential-step positioning type Step-select positioning type
	Setting Mode	-	Set with touch key on front panel
	Number of Control Axes	Single axis, Dual axis	Single axis
Oscillator	Pulse Output Mode	1-pulse output/2-pulse output mode	1-pulse output/2-pulse output mode
Specifications	Acceleration/Deceleration Pattern	Linear Jerk-limit control	Linear Jerk-limit control
	Relative Positioning Operation	0	0
	Absolute Positioning Operation	Ő	=
	Continuous Operation	0	0
Operation Pattern	Return to Mechanical Home Operation	0	0
Fallein	Dual Axis Liner Interpolation Operation	0	_
	Multistep Speed-Change Operation	0	_
Features		-General-purpose inputs: 8 points -General-purpose outputs: 6 points -Carefully selected functions and commands to achieve motor operation with greater ease -Teaching function (when the optional operator interface unit OP300 is used) -No special software -Program input using Windows's standard communication application	-Compact, simple and less wiring -Jerk limit control function for work transfer applications with low vibration
General	Power Source	24	VDC
Specifications	Dimensions	W 40 mm (1.57 in.) \times H 135 mm (5.31 in.) \times D 100 mm (3.94 in.)	W 48 mm (1.89 in.) \times H 48 mm (1.89 in.) \times D 83.7 mm (3.30 in.) (Except for the socket)
Page		89	101

Controllers

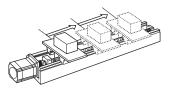
Programmable Motion Controller EMP400 Series ®

Single Axis

Dual Axis

Features

Allowing the Input of 32 Sequence Programs


The **EMP400** Series can store 32 different operation programs. You can select and execute a desired program or programs using an external input signal.

For example, you can create a dedicated sequence program for each work for selection/execution as necessary. In addition to the 32 programs, you can input one sequence program that runs automatically when the power is turned on. A maximum of 1000 steps can be stored when all sequence programs are combined together.

Various Operation Patterns

◇Repeated Positioning

Simple movements like "repeating positioning operation for a specified number of times and then return to the home at the end" can be implemented effortlessly.

Example of Repeated Positioning

♦ Stopping via Sensor Input

You can start an operation from a desired position using a general-purpose input and cause the motor to decelerate to a stop upon sensor detection.

◇Linear Interpolation between Two Axes

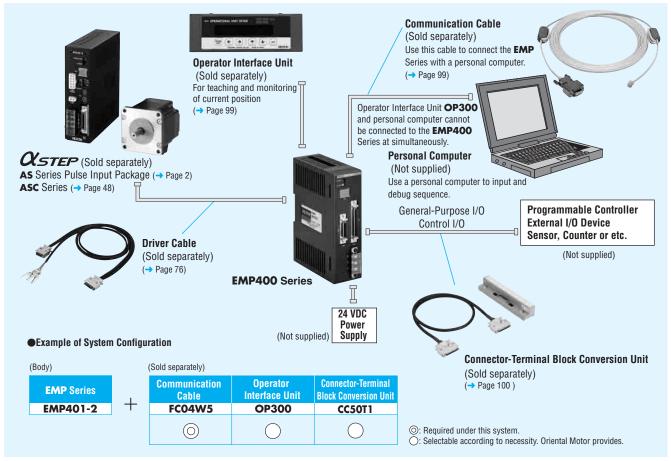
Positioning operations involving two axes can be performed simultaneously via linear interpolation.

♦ Continuous Operation at Variable Speeds

You can change the speed to desired levels during continuous operation.

Teaching Function

You can adjust the travel amount or monitor the current position via teaching, using an optional OP300 operational unit.


No Need for Dedicated Software

Sequence programs are input from HyperTerminal, a standard Windows application, so no dedicated software is necessary.

			EMP400		• •	• •	٠	•	• •	•	•	•	•	• •	8
•		Co Co	ntroller	1.005											
		Software	Version	*.** B											
		ORIENTAL	MOTOR CO	.LTD.											
					• •	•	•	-		•	•	•	•		63
0>edit 4															
Seq 4															
[1] PULSE2 2															
[2] T2 30															
141 VS2 500															
(5) H2 + (6) D2 1000															
[6] D2 1000 [7] INC2															
(8) END															
AND STREET	121.1123	1657 H 1896	12.02 30.01												
>Select:Ax,Ix.or	D×(A1	t/Ins/Del	/Q=exit)												
>>Command:															

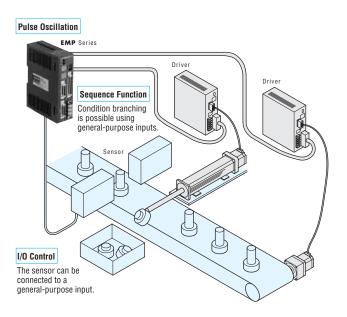
EMP400 Series

An example of a system configuration with the EMP400 Series controller.

• The system configuration shown above is an example. Other combinations are available.

Features

Pulse Oscillation

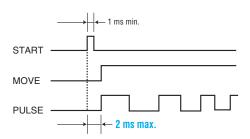

Various operation patterns are provided standard from positioning and origin return to two-axis linear interpolation. All you need is to set the necessary parameters.

Sequence Function

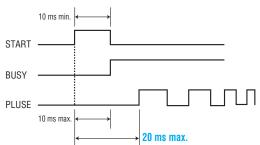
A series of operation patterns can be programmed using dedicated commands. An ideal function for distributed system control.

I/O Control

General-purpose I/O signals are provided in addition to dedicated I/Os such as pulse output and limit-sensor input. Synchronization with peripherals is also possible.



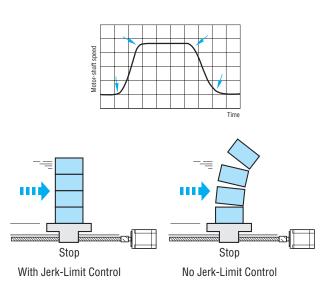
Pulse Oscillation


Fast Response Time

The time between a START signal input and a pulse output is 2 ms or less.

Pulse Oscillating Time of EMP400 Series

Pulse Oscilltating Time of Conventional Controller

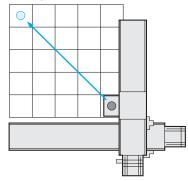


High-Speed Positioning and Low Vibration

The jerk-limit control function allows you to set a shorter acceleration/deceleration time compared with the use of linear acceleration/deceleration patterns. This reduces the overall positioning time.

What is jerk-limit control?

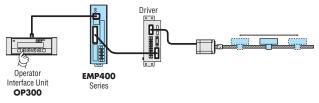
This term refers to the acceleration/deceleration patterns used to ensure the smoothness of speed change at the start of operation or when the machine enters a constant-speed mode from an acceleration mode. Since speed change becomes more smooth, vibration is reduced.


Controllers

Positioning Operation

Supports both incremental mode (travel amount) and absolute mode (absolute-position).

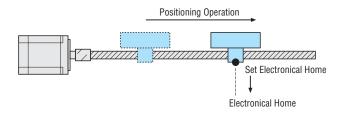
Linear Interpolation Operation


Two axes are controlled simultaneously, allowing direct movement to a target position.

Teaching Function

The amount of travel can be changed by jogging the load into position via the **OP300** interface.

EMP400 Series


Continuous Operation

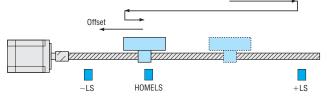
Pulse output continues until a specified input is received or a specified time is reached.

Set Soft Home (Clears the Current Position)

♦ Electronical Home

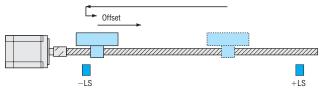
The controller has an internal position counter. "0" position in this counter is soft home. The ability to set a voluntary position to soft home is available.

Homing (Return to Mechanical Home Operation)

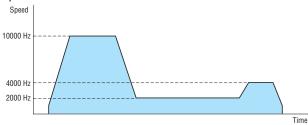

Ability to seek for a sensor representing a positioning reference point (home) is available.

Also available is the ability to set an offset from the home position.

⊘High-Speed Return (Three-Sensor Mode)


Using a predetermined sequence, the mechanical unit returns home at high speed from any position with three sensors monitoring the current position.

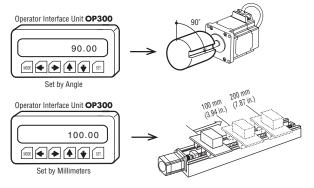
Since it's possible to specify the direction in which the home sensor is entered, backlash error doesn't occur in applications where positioning accuracy is critical.


◇Constant-Speed Return (Two-Sensor Mode)

The mechanical unit returns home at a constant speed. This mode is effective when a compact slider is operated, since the stroke can be fully utilized.

Multistep Speed-Change Operation

Speed can be changed on the fly during continuous operation.

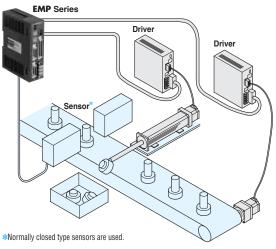


A Choice of Acceleration/Deceleration Patterns

Each operation can be specified with a linear acceleration /deceleration pattern or jerk limit control.

Distance Options

Set travel amount using various scaling units such as pulses, millimeters, or degrees.


Features

List of Motor and Driver Combination

Sequence Function

Stopping via Sensor Input

Connect a motor for transferring products to axis 1, another motor for ejecting nonconforming products to axis 2, and a sensor for detecting the height of transferred products to general-purpose input 1.

Application Description

- ①Transfer products via an index move of 30000 pulses (axis 1).
- ②Detect the height of the product using the sensor (general-purpose input 1).
- (3)Return to (1) if the detection result is acceptable.
- ④ If the detection result is not acceptable, perform an index move of 30000 pulses and eject the nonconforming product (axis 2). Return to ② and perform acceptability judgment for the next product.

Sample Code for Application Example

Seq $\begin{bmatrix} 1\\ 2\\ 1 \rightarrow \begin{bmatrix} 2\\ 3\\ \end{bmatrix}$ $\begin{bmatrix} 4\\ 2\\ 3 \rightarrow \begin{bmatrix} 5 \end{bmatrix}$	1 V1 10000 D1 +30000 INC1 DELAY 0.5 CJMP 1,0,3	; Axis 1 (transfer) ; Axis 1 (transfer) ; Axis 1 (transfer) ; Wait for 0.5 sec. ; Acceptability judgm ; OFF = Go to step [; ON = Go to next st	
$(4) \rightarrow [6]$ [7] [8] [9] [10] [11] [12] [13]	INC1 DELAY 0.5 V2 5000 D2 +1000 ABS2 D2 0 ABS2 JMP 5	; Axis 1 (transfer) ; Wait for 0.5 sec. ; Axis 2 (ejection) ; Jump to step [5]	Incremental positioning operation Operating speed 5000 Hz Travel amount 1000 pulses Absolute positioning operation Travel amount 0 pulse Absolute positioning operation

I/O Control

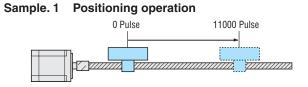
Full Range of I/O

In addition to the signals for controlling the **EMP** Series (e.g., start, emergency stop, ready), a full range of other signals are available, including those necessary for motor control (e.g., pulse, alarm, limit sensor, home sensor) and general-purpose I/Os.

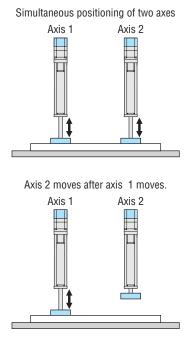
Control I/O (Dedicated) START Input E-STOP Input READY Output
MOVE Output
END Output
etc.
General Purpose I/O
8 inputs
6 outputs
These signals can be easily

These signals can be easily controlled using conditional branching and timer processing.

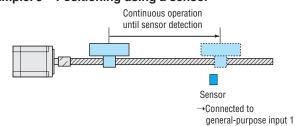
Motor Control I/O (Dedicated)


PULSE Output CCR Output ALARM Input END Input TIMING Input LD Input HOMELS Input SLIT Input etc.

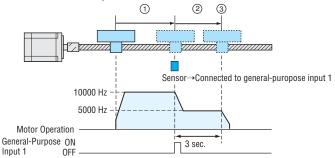
Controllers


EMP400 Series Command List

Command		Description		
	ABS	Perform the positioning operation with the absolute position specified.		
	INC	Perform the positioning operation with the relative position specified.		
	MHOME	Perform the return to mechanical home operation.		
Mater control	SCAN	Perform continuous operation.		
Motor control	RESET	Reset the software.		
	RTNCR	Set the current position to 0 (clear).		
	RUN	Execute the sequence program.		
	S	Decelerate the motor to a stop.		
	D	Set the travel amount and positioning data.		
	DOWEL	Set the operating intervals (dwell time).		
	Н	Set the direction of rotation.		
Data potting	OFS	Set the offset travel amount.		
Data setting	RAMP	Set the acceleration/deceleration pattern and jerk limit time.		
	Т	Set the acceleration/deceleration rate.		
	V	Set the operating speed.		
	VS	Set the starting speed.		
	CJMP	Jump to a specified step when a given condition is satisfied.		
	JMP	Jump to a specified step.		
	DELAY	Set the delay time.		
	MU	Set parallel processing.		
Program control	LOOP	Set the loop.		
	ENDL	End the loop section.		
	END	End the sequence program.		
	IN	Wait for input.		
	OUT	Control the general-purpose output.		
	ACTL	Switch the logic setting for the sensor and alarm.		
	EEN	Set the use of END input.		
	ETIME	Set the END output time.		
Lieuduuses estting	ID	Perform the initial setting for a linear motion product.		
Hardware setting	PULSE	Set the pulse-output mode.		
	SEN	Set the home-detection mode.		
	TIM	Set the use of TIM. input and SLIT input.		
	UNIT	Set the unit for travel amount.		
	EDIT	Edit the sequence program.		
	DEL	Delete the sequence program.		
Others	DWNLD	Download the sequence program.		
	UPLD	Upload the sequence program.		
	R	Check the system conditions.		


Sample Programs

Sample. 2 Inputting multiple operation patterns



Sample. 3 Positioning using a sensor

Sample. 4 Multistep speed-change operation

- ①Continuous operation at 10000 Hz
- ②Decelerate to 5000 Hz upon sensor detection
- ③Decelerate to a stop after three seconds

[1] VS1 500	; Starting speed 500 Hz
[2] V1 1000	; Operating speed 1000 Hz
[3] T1 30.0	; Acceleration/deceleration rate 30.0 ms/kHz
[4] D1 +11000	; Travel amount 11000 pulses in CW direction
[5] INC1	; Execute relative positioning operation

Seq 99	; Hardware Setting			
[1] UNIT1 0.02,1	; Axis 1	Change to travel amount mm		
[2] UNIT2 0.02,1	; Axis 2	Change to travel amount mm		
Seq 1	,	cute at same time		
[1] V1 1000		Operating speed 1000 Hz		
[2] D1 +50	, -	Travel amount 50 mm		
[3] D2 +50	; Axis 2	Travel amount 50 mm		
[4] ABSC	; Axes 1, 2	Execute absolute positioning operation		
[5] DELAY 1.0	; Pause at 1	-second internal timer		
[6] D1 0	; Axis 1	Travel amount 0 mm		
[7] D2 0	; Axis 2	Travel amount 0 mm		
[8] ABSC	; Axes 1, 2	Execute absolute positioning operation		
0		1		
Seq 2	'	1 executes, axis 2 executes		
[1] V1 1000	; Axis 1	Operating speed 1000 Hz		
[2] D1 +50	; Axis 1	Travel amount 50 mm		
[3] ABS1	; Axis 1	Execute absolute positioning operation		
[4] D1 0	; Axis 1	Travel amount 0 mm		
[5] ABS1	; Axis 1	Execute absolute positioning operation		
[6] V2 2000	; Axis 2	Operating speed 2000 Hz		
[7] D2 +50	; Axis 2	Travel amount 50 mm		
[8] ABS2	; Axis 2	Execute absolute positioning operation		
[9] D2 0	; Axis 2	Travel amount 0 mm		
[10] ABS2	; Axis 2	Execute absolute positioning operation		
[1] VS1 500	; Starting s	beed 500 Hz		
[2] V1 20000	; Operating	speed 20000 Hz		

[1] VS1 500	; Starting speed 500 Hz
[2] V1 20000	; Operating speed 20000 Hz
[3] T1 30.0	; Acceleration/deceleration rate 30.0 ms/kHz
[4] H1 +	; Direction of rotation + (CW direction)
[5] SCAN1	; Start continuous operation
[6] IN 1,1	; General-purpose input 1 Waiting for ON
[7] S1	; Decelerate to a stop

[1]

[2] [3]

[4]

[5]

[6]

[7]

[8] [9]

VS1 500 V1 10000 T1 30.0	; Starting speed 500 Hz ; Operating speed 10000 Hz ; Acceleration/deceleration rate 30.0 ms/kHz
H1 +	; Direction of rotation + (CW direction)
SCAN1	: Start continuous operation
IN 1,1	; General-purpose input 1 Waiting for ON
V1 5000	; Decelerate to 5000 Hz
DELAY 3.0	; Wait time 3 seconds
S1	; Decelerate to a stop

Line-up

Functions System Configuration Product Line Specifications and Characteristics

AC Input AS Series

Controllers

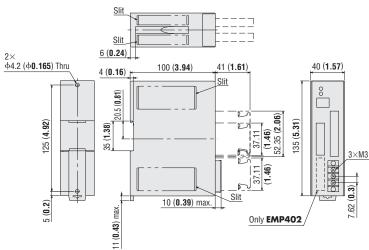
Product Number Code

Number of axes 1: Single axis 2: Dual axis

3 Connector 1: Without connectors 2: With connectors

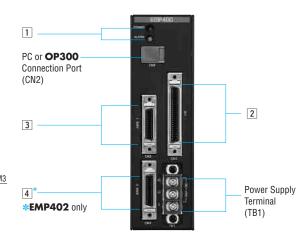
Product Line

Туре	Number of Axes	Connector
EMP401-1	Cingle avia	Without connectors
EMP401-2	Single axis	With connectors
EMP402-1	Dual axis	Without connectors
EMP402-2	Dual axis	With connectors


Specifications

	Series		EMP400 Series		
Number of programs			32		
Program	Capacity		1000 commands		
	Input method		Command input via terminal program		
	Number of control	Main	1		
	tasks	Sub	0		
	Number of control axe	S	EMP401: Single axis, EMP402: Dual axis		
	Pulse output mode		1-pulse output/2-pulse output mode		
	Frequency		10 Hz to 200 kHz (1-Hz increment) Pulse duty 50% (Fixed)		
Oscillator Specifications	Acceleration/decelerati	on rate	0.5 to 1000 ms/kHz (0.1 - ms/kHz increments)		
opecifications	Acceleration/decelerati	on pattern	Linear/jerk-limit control		
	Travel amount		Relative: -16 777 215~+16 777 215 pulse		
	Travel amount		Absolute: -8 388 608~+8 388 607 pulse		
	Relative positioning op	peration	0		
	Absolute positioning o	peration	0		
Operation	Continuous operation		0		
attern	Return to mechanical h	nome operation	0		
	Dual axis liner interpolation operation		0		
	Multistep speed-change operation		Available at continuous operation		
Communication	Communication method		RS-232C based (3-wire)		
Specifications	Transmission rate		9600 bps		
	Inputs (START, E-STOP, etc.)		3 photocoupler inputs 24 VDC, Input resistance 5.4 $k\Omega$		
	Outputs (MOVE, ALM, etc.)		4 open-collector outputs 24 VDC, 25 mA max. each		
nput/Output Signal	General-purpose inputs		8 photocoupler inputs 24 VDC, Input resistance 5.4 k Ω		
Specifications	General-purpose outputs		6 open-collector outputs 24 VDC, 25 mA max. each		
poontoutiono	Driver and sensor inpu	ts	7 photocoupler inputs/axis 12 VDC, input resistance 2.7 $k\Omega$		
	Driver outputs		3 open-collector outputs/axis 12 VDC, 20 mA max. each		
	Input frequency				
noodor Innut	Count method		No encoder input		
Encoder Input	Count range		No encoder input		
	Interface				
	Power supply voltage		24 VDC±5%, Current consumption 0.45 A		
	Dimensions		W 40 mm (1.57 in.) $ imes$ H 135 mm (5.31 in.) $ imes$ D 100 mm (3.94 in.)		
General	Mass		0.26 kg (0.57 lb.)		
Specifications	Ambient temperature		$0^{\circ}C \sim +50^{\circ}C$ ($32^{\circ}F \sim 122^{\circ}F$) (nonfreezing)		
	Ambient humidity		20%~85% (noncondensing)		

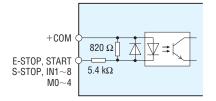
Dimensions Unit = mm (inch)


EMP400 Series

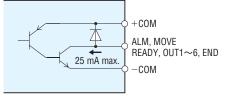
Mass: 0.26 kg (0.57 lb.) CAD B295

Connection and Operation

Connector Layout



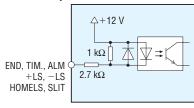
	1 LED Monitor Display				
Indication Condition when LED ON		Condition when LED ON			
	POWER	Lights during 24 VDC input.			
ALARM Lights during alarm signal output.		Lights during alarm signal output.			


2 CN1 I/O Signal Connector

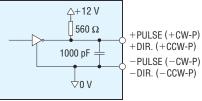
Pin No.	Signal	Description	Pin No.	Signal	Description
1	-	Not used	26	-	Not used
2	E-STOP Input	Emergency Stop	27	ALM Output	Alarm
3	START Input	Execute Sequence	28	-	Not used
4	S-STOP Input	Cease Sequence Execution	29	MOVE Output	Output when outputting pulses
5	-	Not used	30	-	Not used
6	-	Not used	31	READY Output	Ready to accept START input
7	+COM Input	I/O Power Supply (+24 VDC)	32	+COM Input	I/O Power Supply (+24 VDC)
8	IN1 Input		33	M0 Input	
9	IN2 Input		34	M1 Input	
10	IN3 Input		35	M2 Input	Sequence Number Selection
11	IN4 Input	General Inputs	36	M3 Input	
12	IN5 Input	General inputs	37	M4 Input]
13	IN6 Input		38	-	Not used
14	IN7 Input		39	-	Not used
15	IN8 Input		40	-	Not used
16	+COM Input	I/O Power Supply (+24 VDC)	41	-	Not used
17	OUT1 Output		42	-	Not used
18	OUT2 Output		43	-	Not used
19	OUT3 Output	General Outputs	44	-	Not used
20	OUT4 Output	deneral Outputs	45	-	Not used
21	OUT5 Output		46	-	Not used
22	OUT6 Output		47	-	Not used
23	-	Not used	48	-	Not used
24	-	Not used	49	END Output	End Signal
25	-COM Input	GND for I/O	50	-COM Input	GND for I/O

Internal Input Circuit

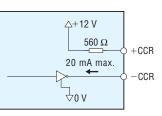
Internal Output Circuit


3 CN3 Axis-1 Driver Connector

4 CN4 Axis-2 Driver Connector


Pin No.	Signal	Description	Pin No.	Signal	Description
1	+PULSE output (+CW-P output)*	Pulse (CW pulse)*	14	_	Not used
2	-PULSE output (-CW-P output)*	Puise (GW puise)**		_	Not used
3	+DIR. output (+CCW-P output)*	Potation direction (CCW pulse)*	16	+CCR output	Counter-clear
4	 DIR. output (-CCW-P output)* 	Rotation direction (CCW pulse)*	17	-CCR output	Counter-clear
5	END input	END signal from driver	18	GND	GND signal from driver
6	TIM. input	Timing signal from driver	19	_	Not used
7	ALM input	Alarm signal from driver	20	_	Not used
8	+LS input	CW limit sensor	21	-	Not used
9	-LS input	CCW limit sensor	22	-	Not used
10	HOMELS input	Home sensor	23	-	Not used
11	SLIT input	Slit sensor	24	-	Not used
12	+12 V output	Power source for sensor (140 mA max.)	25	+5 V output	Power source for timing signal (20 mA max.)
13	GND	GND for sensor	26	GND	GND for timing signal

*The signal names in parentheses are for 2-pulse output mode. The other signal names are for 1-pulse output mode.


Internal Input Circuit

Internal Output Circuit

◇ASC Series

ASC Series

CN3

⊉≠

⊉≠

=د

⊅=

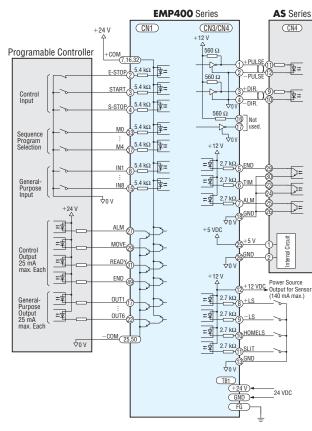
D=

Power Source 0utput for Sensor (140 mA max.)

24 VDC

+I S

(+


PUI SE

+ DIR

DIR

Connection Diagrams

♦AS Series

EMP400 Series CN1) CN3/CN4) +24 V -121 +COM 560 Ω Programable Controller -> E-STOP 5.4 kΩ ‡⊉= 560 Ω 5.4 kΩ ₹⊻ START Contro Input S-STOP 5.4k Ω **⊉**= 560 Ω 5.4 kΩ]⊉= M0 Sequence Program Selection 5.4 kΩ = M4 3 +12 V 4 = 2.7k IN1 5.4 kΩ = General-Purpose Input ± 2.7kΩ 1N8 15.4k Ω = =¥ 2.7kΩ 70 v ALM +24 V GND 401 =¥ ALM +5 VDC ≠₹ MOVE Control Output 25 mA max. Eacl =¥ READY **√**0\ =¥ +12 V END **Ξ**Σ 2.7 kΩ = OUT1 General Purpose Output 25 mA max. Each ≠₹ = 2.7 kΩ . 0UT6 = 2.7 kΩ HOMEL COM 25,50 ≠⊈ 2.7 kΩ 40 V SLIT GND 40 V (TB1)

Notes:

•Except for connection between EMP400 Series and built-in controller (stored data) driver.

The transmission frequency will drop as the pulse line between the driver and controller becomes longer. Exercise caution.

Note:

The transmission frequency will drop as the pulse line between the driver and controller becomes longer. Exercise caution.

Accessories (Sold Separately)

• Operator Interface Unit OP300 (RoHS) Set the travel amount via teaching or monitor the current

The unit comes with a 2 m (6.6 ft.) cable for connection with

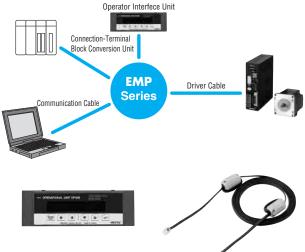
138.5 (**5.45**)

Communication Connector

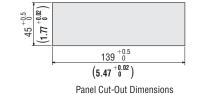
142 (5.59)

A communication cable [length: 5 m (16.4 ft.)] for connecting the **EMP** Series to a PC. A D-sub, 9-pin (female) connector is

Communication Cable FC04W5 (RoHS)


attached on the PC end of the communication cable.

Ш


3

(0.12)

We have a range of optional cables that achieve one-touch connection between the **EMP400** Series and peripherals, as well as an operational unit used for teaching operation.

Functions System Configuration Product Line Specifications and Characteristics

17 (**0.67**)

14 (0.55)

44.5 (1.75)

 α_{STEP} . The other end of the cable is equipped with the connector for the **EMP** Series controller.

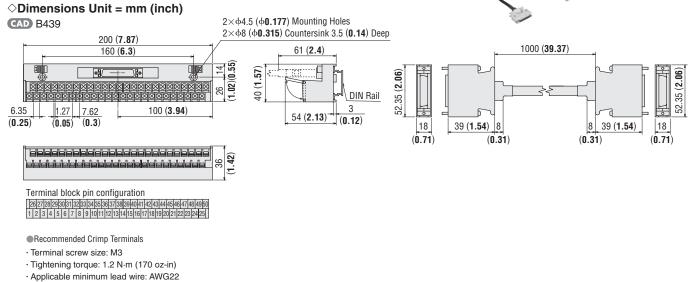
→ Page 76

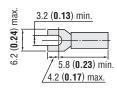
position.

CAD B297

the EMP400 Series.

48 (1.89)


○Dimensions Unit = mm (inch)


11

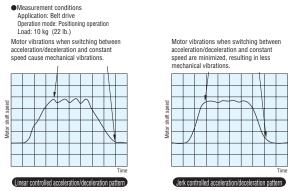
Connector-Terminal Block Conversion Unit CC50T1 (RoHS) (NEW)

The **EMP** Series and programmable controller can be

connected via a terminal block. Cable Length: 1 m (3.3 ft.)

Controller with Jerk Limiting Control Function Step-Select Positioning Type/Sequential-Step Positioning Type

SG8030J RHS

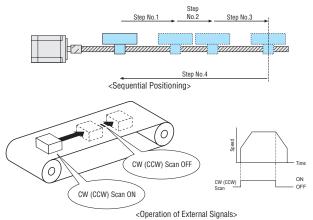

Controller for Stepping Motor

With the **SG8030** Series, all operations including data setting can easily be performed using the four touch-screen buttons on the top panel. In addition, the number of signal lines is reduced to a minimum for easy connection.

Features

Jerk Limiting Control Function Suppresses Motor Drive Vibrations

The "Jerk limiting control function" effectively minimizes vibrations during motor drive and stop. This is especially useful in applications such as driving a belt pulley, to ensure smooth motion of transported works.



*These diagrams are simulated. Actual effect will differ depending on mechanical construction.

To achieve the same positioning time with jerk controlled acceleration/ deceleration, set the acceleration/deceleration rate to 1/2 that of linear controlled acceleration/deceleration.

Sequential Positioning Operation/External Signal Operation Possible

In "Sequential positioning operation, "the start signal always causes execution from step No. 1 in a preselected sequence. In "External signal operation," when the CW scan (or CCW scan) signal input goes ON, operation starts. When the signal goes OFF, slowdown stop occurs. This is useful for moving the work manually to a desired position.

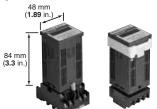
DIN Rail Mounting Model

Recessed Mounting Model

•Maximum Oscillation Frequency 200 kHz The "Maximum oscillation frequency of 200 kHz" allows motor control in micro steps.

•1-Pulse Output/2-Pulse Output Mode Select Possible In addition to the 2-pulse output mode, the controller can also provide 1-pulse operation mode, which makes it compatible with a wide range of motor drivers.

Top Panel Single Interface for All Settings and Operation Checks


All operations including setting of various data can be performed using the four touch-screen buttons on the top panel. You can also check the status of each operation simply by checking the display on the top panel.

●48×48 mm (1.89×1.89 in.) DIN Size and Two Mounting Configurations Are Provided.

The unit is very compact, measuring only 48 (W)×48 (D)×84 (H) mm [1.89 (W)×1.89 (D)×3.3 (H) in.].

Two mounting configurations are available, for DIN rail mounting and recessed mounting.

<DIN Rail Mounting Model> <Recessed Mounting Model>

System Configuration

SG8030 Series

Features

Line-up

Functions

System Configuration

Product Line

AC Input AS Series

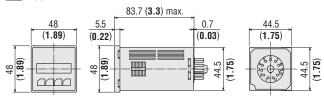
Product Line

Туре	Model
DIN Rail Mounting Model	SG8030J-D
Recessed Mounting Model	SG8030J-U

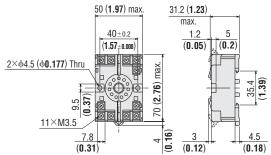
Specifications

Model		SG8030J-D SG8030J-U		
Number of Control Axes		1 axis		
	Number of Settings	4 steps		
Positioning Data	Setting Mode	Set with touch key on front panel (stored in EEPROM)		
-	Setting Method	Incremental mode (point to point)		
	Mode	Sequential-step positioning Step-select positioning		
Positioning	Move Distance Setting Range	Incremental 1~99999 pulses		
Control	Starting Pulse Speed Setting Range (VS)	100 Hz~10 kHz (100 Hz units)		
-	Operating Pulse Speed Setting Range (VR)	100 Hz~200 kHz (100 Hz units)		
	Acceleration/Deceleration Rate Setting Range (TR)	1~100 ms/kHz (28 rates: *)		
Pulse Output Mode		1-pulse output/2-pulse output mode select possible		
Operation Modes		Positioning operation (INDEX operation) Return to mechanical home operation (HOME operation) Continuous operation (SCAN operation) 1-pulse operation (JOG operation: Test mode only)		
Control Modes		External input mode (EXT) Program mode (PROG) Test mode (TEST)		
Number of Maximum	n Return Pulses	-		
Mechanical Home Return Function		Sensor detection of home through designation of mechanical home detection direction of rotation		
Input Signals		24 VDC photocoupler input, input resistance 4.7 k Ω		
Output Signals		Transistor output linked to photocoupler 24 VDC max. 25 mA max.		
Power Supply Voltage		24 VDC±5% current consumption 0.1 A		
Ambient Temperature		$0^{\circ}C \sim +40^{\circ}C (+32^{\circ}F \sim +104^{\circ}F)$ (Nonfreezing)		
Ambient Humidity		20%~85% (Noncondensing)		

*The following 28 acceleration/deceleration rates can be selected. [unit: ms/kHz] 1, 2, 4, 5, 6, 8, 10, 12, 14, 15, 16, 18, 20, 22, 24, 25, 26, 28, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100

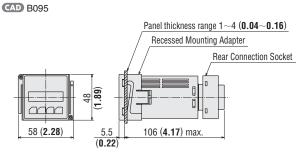

Line-up

AC Input AS Series


DIN Rail Mounting Model

◇SG8030J-D

Mass: 0.17 kg (0.37 lb.) CAD B094



♦Flush Connection Socket (Included)

Recessed Mounting Model

◇SG8030J-U Mass: 0.15 kg (0.33 lb.)

OPanel Mounting Cut-Out Dimensions

Connection and Operation

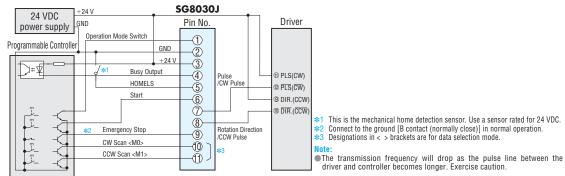
Names and Functions of Controller Parts

①External input mode LED ②Program mode LED		
3Test mode LED	1	EXT (LED): Lights up when external input is selected.
VENTAL DISTRICT	2	PROG (LED): Lights up when program mode is selected.
4 Data display	3	TEST (LED): Lights up when test mode is selected.
	4	Data display: Shows operation and setting status.
	5	MODE key
worth the set of 8SET key	6	↑ key
Comment Automotive (Auto	\bigcirc	↓ key
⑦Down key	8	SET key

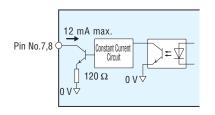
5MODE key 6Up key

◇Connection Socket Signal Table

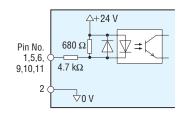
Pin No.	Signal Designation	I/0	Function
1*	Operation Mode Input	Input	S: Switching positioning/home detection operation D: Switching positioning/home detection operation and continuous operation
2	GND	Input	GND connecting terminal
3	+24V	Input	24 VDC power supply input terminal
4	BUSY	Output	Output during pulse oscillation
5	HOMELS	Input	Mechanical home detection sensor
6	Start	Input	Start signal
7	Pulse/CW Pulse	Output	1 pulse output mode: Pulse 2 pulse output mode: CW Pulse
8	Rotation Direction/CCW Pulse	Output	1 pulse output mode: Rotation direction 2 pulse output mode: CCW
9	Emergency Stop	Input	Stop all operations (including busy output)
10*	S: CW Scan D: M0 [CW Scan]	Input	S: CW continuous operation D: M0 data select signal [CW continuous operation]
11*	S: CCW Scan D: M1 [CCW Scan]	Input	S: CCW continuous operation D: M1 data select signal [CCW continuous operation]

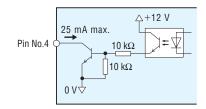

Indications in brackets [] apply to state when mode switching signal was input.

*Only pins 1, 10, 11 differ for sequential positioning and selection positioning.


"S" in the table indicates sequential positioning and "D" indicates selection positioning.

Wiring Diagram


\diamond Connection between SG8030J and \mathcal{C}_{STEP} AS, ASC Series

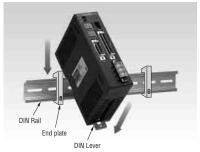

Description of Input/Output Signal Output Signals to Driver

◇Input Signals from Programmable Controller and Limit Sensor

Output Signals to Programmable Controller

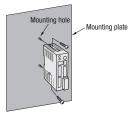
Before Using a Controller

Installation Method


EMP400 Series

OIN Rail Mounting

Use DIN rails with a width of 35 mm (1.38 in.).


Use end plates to secure the controller.

•DIN rails and end plates are not provided with the unit.

♦Screw Mounting

- To fasten the unit with screws, use the two screw holes at the top and bottom.
- •The mounting holes should be machined for either M3 or M4 size screws. Use washers to secure the controller.
- The installation area is made of resin, so handle this area carefully to prevent damage.

Note:

Mounting screws are not provided with the unit.

Mounting Holes Dimensions Unit = mm (inch)

\diamond Installation Method of the **OP300**

The **OP300** can be affixed to a plate of 1 mm (0.04 in.) to 3 mm (0.12 in.) in thickness. The connection cables cannot be installed if the plate is thicker than 3 mm (0.12 in.), so exercise caution.
Push in the unit from the front side of the mounting plate.

Panel Cut-Out Unit = mm (inch)

Note:

Do not suspend the OP300 from the connection cables.

SG8030 Series

OIN Rail Mounting Using Flush Connection Socket


- 1. Mount the flush connection socket to the DIN rail. (The DIN lever should face down.)
- 2. Insert the controller terminals firmly into the flush connection socket.
- Engage the fastening hooks (two places) of the flush connection socket on the controller to secure the assembly.

Note:

 Mount the controller only after connecting all required leads to the terminals of the flush connection socket.

◇Panel Mounting Using Rear Connection Socket

- The **SG8030** Series can be affixed to a plate of 1 mm (0.04 in.) to 4 mm (0.16 in.) in thickness.
- 1. Push in the controller from the front side of the mounting plate.
- 2. Insert the burying-type adapter from the back and push it in until the gap with the mounting plate becomes minimal.

Fastening Hook

DIN Leve

- Affix with the fixing screws (two locations) of the burying-type adapter.
- 4. Insert the controller terminals firmly into the rear connection socket.

Panel Mounting Cut-Out Dimensions Unit = mm (inch)

System Configuration

DIN Rail

105

Installation Location

Indoors, ambient temperature 0°C~+50°C (+32°F~+122°F) [0°C~+40°C (+32°F~+104°F) for SG8030 Series] (Nonfreezing)

If the ambient temperature exceeds 50°C (122°F) [40°C (104°F) for SG8030 Series], use a fan to provide forced cooling. Otherwise internal heat buildup may lead to damage.

When attaching the controller in an enclosed space such as a control box, or somewhere close to a heat-radiating object, ventilation holes should be used to prevent the controllers from overheating.

Ambient humidity 85% maximum (Noncondensing)

Not exposed to corrosive gases or dust

Take care that pieces of conductive material (filing, pins, pieces of wire, etc.) do not enter the controllers. Otherwise circuit damage may occur.

Not exposed to water or oil

Exposure to liquids can lead to corrosion or short-circuits.

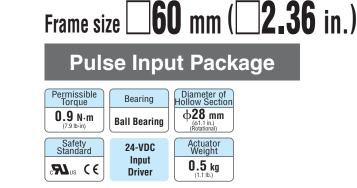
Not exposed to direct sunlight

Not in the vicinity of noise sources

In situations where controllers are located close to a large noise source such as high frequency welding machines or large electromagnetic switches, take steps to prevent noise interference, either by inserting noise filters, using shielded wires or connecting the controller to a separate circuit.

Not in the vicinity of vibration sources

When the controller is to be installed in a location where a source of vibration will cause the controller to be damaged.


Motorized Actuator Products Equipped with α_{step} Stepping Motors

Hollow Rotary Actuator DG Series (RoHS)

To check the product details not featured in this catalog, you must obtain a separate, individual catalog for the product. To request a catalog, contact your nearest Oriental Motor sales office.

The **DG**-Series hollow rotary actuators are constructed to achieve quick, accurate positioning based on a simple design. These actuators come in extensive variations with a choice of frame size of 2.36 in.), 285 mm (□3.35 in.) or □130 mm (□5.12 in.).

Frame size $\square 85 \text{ mm} (\square 3.35 \text{ in.})$ Pulse Input Package Permissible Torque Diameter of Hollow Section Bearing High Permissible-**∲33 mm** Cross-Roller 2.8 N·m Moment Bearing Safety Standard Actuator Weight High AC Input Permissible-Driver 1.2 kg

9) (€

Thrust Load

Frame size **130** mm (**5.12** in.)

Pulse Input Package							
Diameter of Hollow Section	Bearing	Diameter of Hollow Section	High				
12 N·m (106 lb-in)	Cross-Roller Bearing	ф 62 mm (ф2.44 in.) (Rotational)	Permissible- Moment				
High Permissible- Thrust Load	Safety Standard	AC Input Driver	Actuator Weight				
	[₀ Я]us (€]		2.6 kg				

Line-up

Functions System Configuration Product Line

Specifications and Dimensions Connection and Characteristics

List of Motor and Driver Combinations

How to Read Specifications and Characteristics Accessories Stepping Motor Controllers

DC Input ASC Series

AC Input AS Series

This product is manufactured at a plant certified with the international standards **ISO 9001** (for quality assurance) and **ISO 14001** (for systems of environmental management).

Specifications are subject to change without notice. This catalog was published in August, 2006.

ORIENTAL MOTOR U.S.A. CORP.

Western Sales and Customer Service Center

Tel: (310) 784-8200 Fax: (310) 325-1076

Dallas Tel: (214) 432-3386 Denver Tel: (303) 202-5111 Los Angeles Tel: (310) 784-8200 San Jose Tel: (408) 392-9735

Technical Support

Tel: (800) 468-3982 / 7:30 a.m. to 5:00 p.m., P.S.T. (M–F) E-mail: techsupport@orientalmotor.com

Copyright ©2006 ORIENTAL MOTOR U.S.A. CORP.

Midwest Sales and Customer Service Center Tel: (847) 285-5100 Fax: (847) 843-4121

Chicago Tel: (847) 285-5100 Toronto Tel: (905) 502-5333

Eastern Sales and Customer Service Center Tel: (781) 848-2426 Fax: (781) 848-2617 Atlanta Tel: (770) 716-2800 Boston Tel: (781) 848-2426 New York Tel: (973) 359-1100

Obtain Specifications, Online Training and Purchase Products at: www.orientalmotor.com

Printed in Japan 06V 4K 67463K #375

This printed material uses recycled paper and soy inks. This combination is environmentally friendly.