Oriental motor

RoHS RoHS-Compliant 2-Phase Stepping Motor and Microstep Driver Package **CMK Series**

The **CMK** Series is a motor and driver package consisting of a 2-phase stepping motor and 24 VDC input microstep driver, allowing for a reduction in the size of your equipment and in vibration.

2-Phase Stepping Motor and Driver Package CMK Series,

Achieving Low Vibration and Noise with a Microstep Driver

The newly designed compact DC board-level driver achieves microstep drive in a compact, lightweight body. The 2-phase stepping motor's basic step angle (1.8°/step) is divided by a maximum of 16 resolutions (0.1125°/step) without the use of a reduction mechanism or other mechanical elements, which contributes to the reduction in noise and vibration of your equipment.

Microstep/Step	Resolution	Step Angle
1	200	1.8°
2	400	0.9°
4	800	0.45°
8	1600	0.225°
16	3200	0.1125°
(At basic step angle 1.8°/step)		

Comparison of Vibration Characteristics

Full Range of Driver Functions and Features

Five preset step angles

Operating current can easily be set with a digital switch

1-pulse/2-pulse input mode switching

Power LED

Connector with lock (by MOLEX)

One of the Smallest Drivers in the Industry Adopting a Microstep Driver

The driver of the **CMK** Series is one of the smallest, lightest drivers in the industry adopting a microstep driver. The driver is 62% lighter and has 41% less install area (based on horizontal installation) compared to our conventional model. This product contributes to the downsizing of your equipment.

Conventional Model (CSD2120-T)

Mass: 50 g (0.11 lb.)

New Product (CMD21

Comparison with a conventional driver

⊘Mass: 62% less

◇Install area: **41**% less (based on horizontal installation)

◇Volume: **41**% less [the conventional driver includes a 5 mm (0.2 in.) spacer for installation.]

Adopting a Compact, Lightweight Microstep Driver

Wide Variety

The CMK Series motor and driver package comes in five frame sizes of 28 to 60 mm (1.10 to 2.36 in.) as well as four motor types.

Туре	Features	□28 mm (□1.10 in.)	□35 mm (□1.38 in.)	□42 mm (□1.65 in.)	□50 mm (□1.97 in.)	□56.4/60 mm (□2.22/2.36 in.)	Driver
High-Torque Type	The high-torque motor has higher torque of approx. 1.5 times compared with the conventional standard type motor.	T					
High-Resolution Type	High-torque motor offering higher positioning accuracy with the basic step angle set to 0.9°/step, which is just half the basic step angle of the standard type motor.			1			
Standard Type	The basic model offering a good balance of torque and low vibration/noise characteristics.			Ì	0	T	
SH Geared Type	These geared types are effective for inertia reduction, increasing torque, higher resolution and suppressing vibration. Six gear ratios are available.	1		T		S	

High-Torque Type

The high-torque type adopts a new technology and design. This motor produces higher torque of approximately 1.5 times the level achieved by a conventional standard type motor.

Providing torque equivalent to a motor of the next larger frame size, the high-torque type allows for a reduction in the size of your equipment.

The motor also adopts a connector coupling system for easy installation.

RoHS RoHS-Compliant

The **CMK** Series conforms to the RoHS Directive that prohibits the use of six chemical substances including lead and cadmium.

High-Resolution Type

This motor offers a basic step angle of 0.9°, which of half that of the standard type motor. 400 steps per rotation is possible. This motor achieves high resolution, low vibration and improved stopping accuracy.

The small basic

Comparison of Angle – Torque Characteristics

RoHS (Restriction of Hazardous Substances) Directive:

Directive on restriction of the use of certain hazardous substances in electrical and electronic equipment (2002/95/EC). The RoHS Directive prohibits the use of six chemical substances in electrical and electronic products sold in the EU member states. The six controlled substances are: lead, hexavalent chromium, cadmium, mercury and two specific brominated flame-retardants (PBB and PBDE).

System Configuration

An example of a system configuration with the SG8030J controller.

	, , , , , , , , , , , , , , , , , , ,		
No.	Product Name	Overview	Page
1	Controller	This controller outputs pulse commands that determine the rotating amount and rotating speed.	31
2	Motor Mounting Brackets	Dedicated mounting bracket for the motor.	25
3	Flexible Couplings	Coupling that connects the motor shaft to the driven shaft.	27
4	Clean Dampers	Dedicated damper for suppressing stepping motor vibration.	29
5	Driver Lead Wire Set	Cables for connecting the driver and motor, DC power supply or host controller [0.6 m (2 ft.)].	30
6	Motor Lead Wire/Connector Assembly	Lead wire with a connector crimped for connector-coupled motors [0.6 m, 1 m (2 ft., 3.3 ft.)].	30

•Example of System Configuration

СМК244РВР	•	SG8030J-U	PALOPA	MCS140506	D4CL-5.0F	LCS01CMK2
CMK Series	+	Controller	Motor Mounting Bracket	Flexible Coupling	Clean Damper	Driver Lead Wire Set [0.6 m (2 ft.)]
		(Sold separately)				

•The system configuration shown above is an example. Other combinations are available.

4

Product Number Code

• High-Torque Type, High-Resolution Type, Standard Type

CMK264APA-SG10

8

9

2 3 4 5 6 7

<u>CMK</u>	2	4	6	Ρ	Α	Ρ
1	2	3	4	5	6	7

1	Series	CMK: CMK Series
2	2: 2-Phase	
3	Motor Frame Size	2 : 28 mm (1.10 in.) 3 : 35 mm (1.38 in.) 4 : 42 mm (1.65 in.) 5 : 50 mm (1.97 in.) 6 : 56.4 mm (2.22 in.)
4	Motor Case Length	
5	Motor Type	P: High-Torque Type M: High-Resolution Type Blank: Standard Type
6	Shaft Type	A: Single Shaft B: Double Shaft
0	Signal I/O Mode	P: Photocoupler

1	Series	CMK: CMK Series
2	2: 2-Phase	
3	Motor Frame Size	2: 28 mm (1.10 in.) 4: 42 mm (1.65 in.) 6: 60 mm (2.36 in.)
4	Motor Case Length	
5	Shaft Type	A: Single Shaft B: Double Shaft
6	Signal I/O Mode	P: Photocoupler
0	USA Version	
8	Gearhead Type	SG: SH Geared Type
9	Gear Ratio	

Product Line

•SH Geared Type

(1)

High-Torque Type			
Model (Single Shaft)	Model (Double Shaft)		
CMK223PAP	CMK223PBP		
CMK224PAP	CMK224PBP		
CMK225PAP	CMK225PBP		
CMK233PAP	CMK233PBP		
CMK235PAP	CMK235PBP		

High-Resolution Type

CMK244PAP

CMK246PAP

•	
Model (Single Shaft)	Model (Double Shaft)
CMK243MAPA	CMK243MBPA
CMK244MAPA	СМК244МВРА
CMK245MAPA	CMK245MBPA
CMK264MAP	CMK264MBP
CMK266MAP	CMK266MBP
CMK268MAP	CMK268MBP
CMK245MAPA CMK264MAP CMK266MAP CMK268MAP	CMK245MBPA CMK264MBP CMK266MBP CMK268MBP

CMK244PBP

CMK246PBP

Standard Type

Model (Single Shaft)	Model (Double Shaft)
CMK243APA	CMK243BPA
CMK244APA	CMK244BPA
CMK245APA	CMK245BPA
CMK256AP	CMK256BP
CMK258AP	CMK258BP
CMK264AP	CMK264BP
CMK266AP	CMK266BP
CMK268AP	CMK268BP

•SH Geared Type

• • • • • • • • • • • • • • • • • • •	
Model (Single Shaft)	Model (Double Shaft)
CMK223AP-SG7.2	CMK223BP-SG7.2
CMK223AP-SG9	CMK223BP-SG9
CMK223AP-SG10	CMK223BP-SG10
CMK223AP-SG18	CMK223BP-SG18
CMK223AP-SG36	CMK223BP-SG36
CMK243APA-SG3.6	CMK243BPA-SG3.6
CMK243APA-SG7.2	CMK243BPA-SG7.2
CMK243APA-SG9	CMK243BPA-SG9
CMK243APA-SG10	CMK243BPA-SG10
CMK243APA-SG18	CMK243BPA-SG18
CMK243APA-SG36	CMK243BPA-SG36
CMK264APA-SG3.6	CMK264BPA-SG3.6
CMK264APA-SG7.2	CMK264BPA-SG7.2
CMK264APA-SG9	CMK264BPA-SG9
CMK264APA-SG10	CMK264BPA-SG10
CMK264APA-SG18	CMK264BPA-SG18
CMK264APA-SG36	CMK264BPA-SG36

Combinations	Motor and Driver
Accessories	

Dimensions

Connection and Operation

High-Torque Type Motor Frame Size 28 mm (1.10 in.)

Specifications (RoHS)

Madal	Single Shaft	CMK223PAP*2	CMK224PAP*2	CMK225PAP*2		
wouer	Double Shaft	CMK223PBP*2	CMK224PBP*2	CMK225PBP*2		
Maximum Holding Torque*1	N•m (oz-in)	0.05 (7.1)	0.075 (10.6)	0.09 (12.7)		
Rotor Inertia	J: kg·m² (oz-in²)	9×10 ⁻⁷ (0.049)	12×10 ⁻⁷ (0.066)	18×10 ⁻⁷ (0.098)		
Rated Current	A/Phase		0.95			
Basic Step Angle			1.8°			
Power Source			24 VDC±10% 1.5 A			
Excitation Mode			Microstep			
Maaa	Motor kg (lb.)	0.11 (0.24)	0.14 (0.31)	0.2 (0.44)		
WId55	Driver kg (lb.)	0.05 (0.11)				
Dimonoion No	Motor		1			
	Driver		10			

* 1 The holding torque (2-phase excitation) is the maximum holding power (torque) the stepping motor has when power is being supplied but the motor shaft is not rotating (rated current). At motor standstill, the driver's automatic current cutback function reduces the maximum holding torgue by approximately 40%.

*2 Motor lead wire/connector assembly of 0.6 m (2 ft.) is included with the motor and driver package for the connector-coupled types.

Speed – Torque Characteristics fs: Maximum Starting Frequency

CMK223PAP/CMK223PBP

Power Input: 24 VDC Current: 0.95 A/Phase (2 Phases ON) With Damper **D4CL-5.0F**: J_{L=}34×10⁻⁷ kg-m² (0.186 oz-in²) 0.12 16 0.10

CMK224PAP/CMK224PBP

CMK225PAP/CMK225PBP

• The pulse input circuit responds to approximately 100 kHz with a pulse duty of 50%.

Notes:

• Pay attention to heat dissipation from motor as there will be a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor case under 100°C (212°F). • The driver's automatic current cutback function at motor standstill reduces maximum holding torque by approximately 40%.

High-Torque Type Motor Frame Size 35 mm (1.38 in.), 42 mm (1.65 in.)

Specifications (RoHS)

Madal	Single Shaft	CMK233PAP*2	CMK235PAP*2	CMK244PAP*2	CMK246PAP*2		
Model	Double Shaft	CMK233PBP*2	CMK235PBP*2	CMK244PBP*2	CMK246PBP*2		
Maximum Holding Torque*1	N•m (oz-in)	0.16 (22)	0.3 (42)	0.39 (55)	0.75 (106)		
Rotor Inertia	J: kg·m² (oz-in²)	24×10 ⁻⁷ (0.131)	50×10 ⁻⁷ (0.27)	57×10 ⁻⁷ (0.31)	114×10 ⁻⁷ (0.62)		
Rated Current	A/Phase		1.	2			
Basic Step Angle			1.	8°			
Power Source			24 VDC±1	0% 1.7 A			
Excitation Mode			Micro	ostep			
Moon	Motor kg (lb.)	0.18 (0.4)	0.285 (0.63)	0.3 (0.66)	0.5 (1.1)		
Wass	Driver kg (lb.)	0.05 (0.11)					
Dimension No.	Motor	[2	[3		
	Driver		_				

* 1 The holding torque (2-phase excitation) is the maximum holding power (torque) the stepping motor has when power is being supplied but the motor shaft is not rotating (rated current). At motor standstill, the driver's automatic current cutback function reduces the maximum holding torgue by approximately 40%.

*2 Motor lead wire/connector assembly of 0.6 m (2 ft.) is included with the motor and driver package for the connector-coupled types.

Speed – Torque Characteristics fs: Maximum Starting Frequency

CMK233PAP/CMK233PBP

CMK244PAP/CMK244PBP

The pulse input circuit responds to approximately 100 kHz with a pulse duty of 50%. Notes:

• Pay attention to heat dissipation from motor as there will be a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor case under 100°C (212°F). • The driver's automatic current cutback function at motor standstill reduces maximum holding torque by approximately 40%.

er Input: 24 VDC Current: 1.2 A/Phase (2 Phases ON) With Damper D4CL-5.0F: JL=34×10⁻⁷ kg·m² (0.186 oz-in²) Resolution 1 Resolution 1 1.87/step 0.30 40 0.2 Resolution 2 0.9°/ste 30 [W-N] 0.15 orque [oz-in] 20

Current [A]

CMK235PAP/CMK235PBP

Pulse Speed [kHz]

CMK246PAP/CMK246PBP

Accessories

Dimensions

Connection and

Operation

Combinations

High-Resolution Type Motor Frame Size 42 mm (1.65 in.), 56.4 mm (2.22 in.)

Specifications (RoHS)

	Single SI	haft	CMK243MAPA	CMK244MAPA	CMK245MAPA	CMK264MAP	CMK266MAP	CMK268MAP	
Model	Double S	Shaft	СМК243МВРА	СМК244МВРА	CMK245MBPA	CMK264MBP	СМК266МВР	CMK268MBP	
Maximum Holding Torque*	N	•m (oz-in)	0.16 (22)	0.26 (36)	0.32 (45)	0.37 (52)	0.9 (127)	1.35 (191)	
Rotor Inertia	J: kg•n	n² (oz-in²)	35×10 ⁻⁷ (0.191)	54×10 ⁻⁷ (0.3)	68×10 ⁻⁷ (0.37)	120×10 ⁻⁷ (0.66)	300×10 ⁻⁷ (1.64)	480×10 ⁻⁷ (2.6)	
Rated Current		A/Phase	0.95	0.95 1.2			2		
Basic Step Angle					0.	9°			
Power Source			24 VDC±10% 1.5 A	24 VDC±1	10% 1.7 A		$24\text{VDC}{\pm}10\%~2.9\text{A}$		
Excitation Mode					Micro	ostep			
Maga	Motor	kg (lb.)	0.24 (0.53)	0.3 (0.66)	0.37 (0.81)	0.45 (0.99)	0.7 (1.54)	1 (2.2)	
WId55	Driver	kg (lb.)	0.05 (0.11)						
Dimension No.	Motor			4			6		
	Driver								

* The holding torque (2-phase excitation) is the maximum holding power (torque) the stepping motor has when power is being supplied but the motor shaft is not rotating (rated current). At motor standstill, the driver's automatic current cutback function reduces the maximum holding torque by approximately 40%.

Speed – Torque Characteristics fs: Maximum Starting Frequency

CMK243MAPA/CMK243MBPA

CMK245MAPA/CMK245MBPA

CMK266MAP/CMK266MBP

The pulse input circuit responds to approximately 100 kHz with a pulse duty of 50%.
 Notes:

Pay attention to heat dissipation from motor as there will be a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor case under 100°C (212°F).
 The driver's automatic current cutback function at motor standstill reduces maximum holding torque by approximately 40%.

CMK244MAPA/CMK244MBPA Power Input: 24 VDC Current: 1.2 A/Phase (2 Phases ON) With Damper **D4CL-5.0F**: JL=34×10⁻⁷ kg·m² (0.186 oz-in²) 0.3 Resolution 1 0.9°/step 0.30 40 Resolution 2 0.45°/ster 0.25 Pullout Torque [oz-in] 30 훈 2 0.20 anbio 20 0.1 0.10 Current [A] 10 0.05 ┥┥┥╴╴╴╴╴╴╸╸ ٥ 1500 2500 000 2000 Speed [r/min] 15 Resolution 1 (30) (Resolution 2) 10 (20) 0(0) 5 (10) Pulse Speed [kHz]

CMK264MAP/CMK264MBP

CMK268MAP/CMK268MBP

Product Line

Standard Type Motor Frame Size 42 mm (1.65 in.), 50 mm (1.97 in.)

Specifications (RoHS)

Madal	Single Shaft	CMK243APA	CMK244APA	CMK245APA	CMK256AP	CMK258AP	
WOUEI	Double Shaft	CMK243BPA	CMK244BPA	CMK245BPA	CMK256BP	CMK258BP	
Maximum Holding Torque*	N•m (oz-ir) 0.16 (22)	0.26 (36) 0.32 (45)		0.56 (79)	1.2 (170)	
Rotor Inertia	J: kg·m² (oz-in) 35×10 ⁻⁷ (0.191)	54×10 ⁻⁷ (0.3)	68×10 ⁻⁷ (0.37)	230×10 ⁻⁷ (1.26)	420×10 ⁻⁷ (2.3)	
Rated Current	A/Phas	e 0.95	1.2 2			2	
Basic Step Angle				1.8°			
Power Source		24 VDC±10% 1.5 A	24 VDC±1	10% 1.7 A	24 VDC±1	10% 2.9 A	
Excitation Mode				Microstep			
Masa	Motor kg (lb) 0.21 (0.46)	0.27 (0.59)	0.35 (0.77)	0.53 (1.17)	0.89 (1.96)	
Mass	Driver kg (lb)	0.05 (0.11)				
Dimension No.	Motor		4		[5	
	Driver			10			

* The holding torque (2-phase excitation) is the maximum holding power (torque) the stepping motor has when power is being supplied but the motor shaft is not rotating (rated current). At motor standstill, the driver's automatic current cutback function reduces the maximum holding torque by approximately 40%.

Speed – Torque Characteristics fs: Maximum Starting Frequency

CMK243APA/CMK243BPA

CMK245APA/CMK245BPA

CMK258AP/CMK258BP

 \bullet The pulse input circuit responds to approximately 100 kHz with a pulse duty of 50%.

Notes

Pay attention to heat dissipation from motor as there will be a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor case under 100°C (212°F).
 The driver's automatic current cutback function at motor standstill reduces maximum holding torque by approximately 40%.

CMK244APA/CMK244BPA

CMK256AP/CMK256BP

Standard Type Motor Frame Size 56.4 mm (2.22 in.)

Specifications (RoHS)

Madal	Single Shaft	CMK264AP	CMK266AP	CMK268AP			
WOUEI	Double Shaft	CMK264BP	CMK266BP	CMK268BP			
Maximum Holding Torque*	N•m (oz-in)	0.36 (51)	0.82 (116)	1.35 (191)			
Rotor Inertia	J: kg•m² (oz-in²)	120×10 ⁻⁷ (0.66) 300×10 ⁻⁷ (1.64)		480×10 ⁻⁷ (2.6)			
Rated Current	A/Phase		2				
Basic Step Angle			1.8°				
Power Source			24 VDC±10% 2.9 A				
Excitation Mode			Microstep				
Maaa	Motor kg (lb.)	0.45 (0.99)	0.7 (1.54)	1 (2.2)			
Mass	Driver kg (lb.)	0.05 (0.11)					
Dimonoion No	Motor		6				
	Driver		10				

* The holding torque (2-phase excitation) is the maximum holding power (torque) the stepping motor has when power is being supplied but the motor shaft is not rotating (rated current). At motor standstill, the driver's automatic current cutback function reduces the maximum holding torgue by approximately 40%.

Speed – Torque Characteristics fs: Maximum Starting Frequency

Power Input: 24 VDC Current: 2.0 A/Phase (2 Phases ON) With Damper **D6CL-6.3F**: JL=140×10⁻⁷ kg·m² (0.77 oz-in²) 160 Resolution 1 1.8°/step -Resolution 2 0.9°/step 120 ٥ Torque [oz-in] 80 orque | Current [A] 40 Dri 0 150 000 2500

CMK268AP/CMK268BP

CMK266AP/CMK266BP

The pulse input circuit responds to approximately 100 kHz with a pulse duty of 50%.

Notes:

 Pay attention to heat dissipation from motor as there will be a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor case under 100°C (212°F). • The driver's automatic current cutback function at motor standstill reduces maximum holding torque by approximately 40%.

Product Line

Specifications, Characteristics

Accessories

SH Geared Type Motor Frame Size 28 mm (1.10 in.)

Specifications (RoHS)

Madal	Single Shaft	CMK223AP-SG7.2*	CMK223AP-SG9*	CMK223AP-SG10*	CMK223AP-SG18*	CMK223AP-SG36**	
Widdei	Double Shaft	CMK223BP-SG7.2*	CMK223BP-SG9 ^{#8}	CMK223BP-SG10*	CMK223BP-SG18*	CMK223BP-SG36*	
Maximum Holding Torque*1	N•m (oz-in)		0.3 (42)		0.4	(56)	
Rotor Inertia	J: kg·m² (oz-in²)			9×10 ⁻⁷ (0.049)			
Rated Current	A/Phase			0.95			
Basic Step Angle		0.25°	0.2°	0.18°	0.1°	0.05°	
Gear Ratio		7.2:1	9:1	10:1	18:1	36:1	
Permissible Torque*2	N•m (oz-in)		0.3 (42)		0.4	(56)	
Permissible Speed Range	r/min	0~250	0~200	0~180	0~100	0~50	
Power Source				24 VDC±10% 1.5 A			
Excitation Mode				Microstep			
Maaa	Motor kg (lb.)			0.16 (0.35)			
Mass	Driver kg (lb.)	0.05 (0.11)					
Dimonsion No.	Motor			7			
Dimension No.	Driver			10			

*1 The holding torque (2-phase excitation) is the maximum holding power (torque) the stepping motor has when power is being supplied but the motor shaft is not rotating (rated current). At motor standstill, the driver's automatic current cutback function reduces the maximum holding torque by approximately 40%.

* 2 The permissible torgue represents the torgue value limited by the mechanical strength of the gear when operated at a constant speed. The total torgue including acceleration/deceleration torgue should not exceed this value.

* 3 Motor lead wire/connector assembly of 0.6 m (2 ft.) is included with the motor and driver package for the connector-coupled types.

Notes

Backlash value is approximately 1 to 2°.

• Direction of rotation of the motor and that of the gear output shaft are the same for gear ratios 7.2:1 and 36:1. It is the opposite for 9:1, 10:1 and 18:1 gear ratios.

Speed – Torque Characteristics fs: Maximum Starting Frequency

CMK223AP-SG7.2/CMK223BP-SG7.2

CMK223AP-SG10/CMK223BP-SG10

CMK223AP-SG36/CMK223BP-SG36

CMK223AP-SG9/CMK223BP-SG9

CMK223AP-SG18/CMK223BP-SG18

• The pulse input circuit responds to approximately 100 kHz with a pulse duty of 50%. Notes:

• Pay attention to heat dissipation from motor as there will be a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor case under 100°C (212°F)

The driver's automatic current cutback function at motor standstill reduces maximum holding torque by approximately 40%.

SH Geared Type Motor Frame Size 42 mm (1.65 in.)

Specifications (RoHS)

Model	Single Shaft	CMK243APA-SG3.6	CMK243APA-SG7.2	CMK243APA-SG9	CMK243APA-SG10	CMK243APA-SG18	CMK243APA-SG36	
wouer	Double Shaft	CMK243BPA-SG3.6	CMK243BPA-SG7.2	CMK243BPA-SG9	CMK243BPA-SG10	CMK243BPA-SG18	CMK243BPA-SG36	
Maximum Holding Torque*1	N•m (lb-in)	0.2 (1.77)	0.4 (3.5)	0.5 (4.4)	0.56 (4.9)	0.8	(7)	
Rotor Inertia	J: kg·m² (oz-in²)			35×10	⁷ (0.191)			
Rated Current	A/Phase			0.	95			
Basic Step Angle		0.5°	0.25°	0.2°	0.18°	0.1°	0.05°	
Gear Ratio		3.6:1	7.2:1	9:1	10:1	18:1	36:1	
Permissible Torque*2	N•m (lb-in)	0.2 (1.77)	0.4 (3.5)	0.5 (4.4)	0.56 (4.9)	8.0	(7)	
Permissible Speed Range	r/min	0~500	0~250	0~200	0~180	0~100	0~50	
Power Source				24 VDC±	10% 1.5 A			
Excitation Mode				Micr	ostep			
Maga	Motor kg (lb.)			0.35	(0.77)			
WId55	Driver kg (lb.)		0.05 (0.11)					
Dimonsion No	Motor			[8			
Dimension No.	Driver			[10			

*1 The holding torque (2-phase excitation) is the maximum holding power (torque) the stepping motor has when power is being supplied but the motor shaft is not rotating (rated current). At motor standstill, the driver's automatic current cutback function reduces the maximum holding torque by approximately 40%.

* 2 The permissible torque represents the torque value limited by the mechanical strength of the gear when operated at a constant speed. The total torque including acceleration/deceleration torque should not exceed this value.

Power Input: 24 VDC Current: 0.95 A/Phase (2 Phases ON) With Damper D4CL-5.0F: $J_L=34\times10^{-7}$ kg·m² (0.186 oz-in²

Pulse Speed [kHz]

-Resolution 1 0.25°/step

25

6 Resolution 1 (12) (Resolution 2)

- - Resolution 2 0.125°/ste

Notes

Backlash value is approximately 1 to 2°.

• Direction of rotation of the motor and that of the gear output shaft are the same for gear ratios 3.6:1, 7.2:1, 9:1 and 10:1. It is the opposite for 18:1 and 36:1 gear ratios.

CMK243APA-SG7.2/

CMK243BPA-SG7.2

0.

Speed – Torque Characteristics fs: Maximum Starting Frequency

CMK243APA-SG3.6/ CMK243BPA-SG3.6

CMK243APA-SG10/

With D

CMK243BPA-SG10

0

Ē0.

lorque

٥

0

Power Input: 24 VDC Current: 0.95 A/Phase (2 Phases ON)

. ible Torqu

Driver Input Current

100

Speed [r/min]

Pulse Speed [kHz]

(4)

nper **D4CL-5.0F**: JL=34×10⁻⁷ kg·m² (0.186 oz-in

Resolution 1 0.18°/step

20

6 Resolution 1 (12) (Resolution 2)

[lb-in] Ē 0.0 Torque e Tora OLUIN Current [A] ٥ Driver Input Curre 150 20 Speed [r/min] 0(0) 4 (8)

2 (4)

CMK243APA-SG18/ CMK243BPA-SG18

Power Input: 24 VDC Current: 0.95 A/Phase (2 Phases ON) With Da per **D4CL-5.0F**: JL=34×10⁻⁷ kg·m² (0.186 oz-in² Resolution 1 0.1°/step cible -Resolution 2 0.05°/step 0.1 Torque [lb-in] Ê 0.0 for a ue Current [A] ٥ out Curre Speed [r/min] 0(0) Resolu (Resolu 6 (12) (4) 4 (8)

CMK243APA-SG9/ CMK243BPA-SG9

CMK243APA-SG36/ CMK243BPA-SG36

• The pulse input circuit responds to approximately 100 kHz with a pulse duty of 50%.

(8)

Notes

Torque [lb-in]

Current [A]

• Pay attention to heat dissipation from motor as there will be a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor case under 100°C (212°F). • The driver's automatic current cutback function at motor standstill reduces maximum holding torque by approximately 40%.

Pulse Speed [kHz]

Product Line

Configuration System

SH Geared Type Motor Frame Size 60 mm (2.36 in.)

Specifications (RoHS)

Madal	Single Shaft	CMK264APA-SG3.6	CMK264APA-SG7.2	CMK264APA-SG9	CMK264APA-SG10	CMK264APA-SG18	CMK264APA-SG36		
WOUEI	Double Shaft	CMK264BPA-SG3.6	CMK264BPA-SG7.2	CMK264BPA-SG9	CMK264BPA-SG10	CMK264BPA-SG18	CMK264BPA-SG36		
Maximum Holding Torque*1	N•m (lb-in)	1 (8.8)	2 (17.7)	2.5 (22)	2.7 (23)	3 (26)	4 (35)		
Rotor Inertia	J: kg·m² (oz-in²)			120×10) ⁻⁷ (0.66)				
Rated Current	A/Phase				2				
Basic Step Angle		0.5°	0.25°	0.2°	0.18°	0.1°	0.05°		
Gear Ratio		3.6:1	7.2:1	9:1	10:1	18:1	36:1		
Permissible Torque*2	N•m (lb-in)	1 (8.8)	2 (17.7)	2.5 (22)	2.7 (23)	3 (26)	4 (35)		
Permissible Speed Range	r/min	0~500	0~250	0~200	0~180	0~100	0~50		
Power Source				24 VDC±1	0% 2.9 A				
Excitation Mode				Micro	ostep				
Maga	Motor kg (lb.)			0.75	(1.65)				
WId55	Driver kg (lb.)		0.05 (0.11)						
Dimonoion No	Motor			[9				
Dimension No.	Driver			[10				

*1 The holding torque (2-phase excitation) is the maximum holding power (torque) the stepping motor has when power is being supplied but the motor shaft is not rotating (rated current). At motor standstill, the driver's automatic current cutback function reduces the maximum holding torque by approximately 40%.

* 2 The permissible torque represents the torque value limited by the mechanical strength of the gear when operated at a constant speed. The total torque including acceleration/deceleration torque should not exceed this value.

Notes

Backlash value is approximately 1 to 2°.

• Direction of rotation of the motor and that of the gear output shaft are the same for gear ratios 3.6:1, 7.2:1, 9:1 and 10:1. It is the opposite for 18:1 and 36:1 gear ratios.

Speed – Torque Characteristics fs: Maximum Starting Frequency

Torque [lb-in] 00

¥

Current

Ē

orque

0 (0)

CMK264APA-SG9/ CMK264BPA-SG9

CMK264APA-SG36/ CMK264BPA-SG36

The pulse input circuit responds to approximately 100 kHz with a pulse duty of 50%.

6 (12)

Resol (Resol

Permissible Torque

10

(4)

Speed [r/min]

Pulse Speed [kHz]

4 (8)

Notes

30

[N·m]

forque

0(0)

Torque [lb-in] 30

10

Current [A]

• Pay attention to heat dissipation from motor as there will be a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor case under 100°C (212°F). • The driver's automatic current cutback function at motor standstill reduces maximum holding torque by approximately 40%.

2 (4)

To

Speed [r/min]

Pulse Speed [kHz]

4 (8)

6 (12)

Driver Specifications

		Photocoupler input					
		Pulse (CW pulse) signal/Rotation direction (CCW pulse) signal: Input resistance 200 Ω , Input current 5~20 mA					
Input Mode	Input Mada	Photocoupler ON: $+3 \sim 5.25$ V Photocoupler OFF: $0 \sim +1$ V (Voltage between terminals)					
	Input Mode	All windings off signal/Step angle select signal/Automatic current cutback release signal:					
		Input resistance 3.3 k Ω , Input current 1 mA (5 VDC)/8 mA (24 VDC)					
		Photocoupler ON: $+4.5 \sim 26.4$ V Photocoupler OFF: $0 \sim +1$ V (Voltage between terminals)					
		Operation command pulse signal (CW direction operation command pulse signal when in 2-pulse input mode) Negative logic pulse input					
	Pulse Signal	Pulse width: 5 μ s minimum; Pulse rise/fall: 2 μ s maximum Pulse duty: 50% and below					
	(CW Pulse Signal)	The motor moves one step when the pulse input is switched from ON to OFF.					
		Maximum input pulse frequency: 100 kHz (When the pulse duty is 50%)					
Input Signal		Rotation direction signal (CCW direction operation command pulse signal when in 2-pulse input mode Photocoupler ON: CW,					
	Potation Direction Signal	Photocoupler OFF: CCW) Negative logic pulse input					
	(CCW/ Dulao Signal)	Pulse width: 5 μ s minimum; Pulse rise/fall: 2 μ s maximum Pulse duty: 50% and below					
	(COW Pulse Signal)	The motor moves one step when the pulse input is switched from ON to OFF.					
		Maximum input pulse frequency: 100 kHz (When the pulse duty is 50%)					
	All Windings Off Signal	When in the "photocoupler ON" state, the output current to the motor is cut off and the motor shaft can be rotated by external force.					
		When in the "photocoupler OFF" state, the output current to the motor is turned on.					
	Stop Angle Select Signal	When in the "photocoupler ON" state, the motor operates at the basic step angle regardless of the settings of the step angle setting switches.					
	Step Angle Select Signal	When in the "photocoupler OFF" state, the motor operates at the step angle set by the step angle setting switches.					
	Automatic Current Cutback	When in the "photocoupler ON" state, the automatic current cutback function will not be activated even after the motor stops.					
	Release Signal	When in the "photocoupler OFF" state, the automatic current cutback function will be activated after the motor stops (after approx. 100 ms).					
	Output Mode	Photocoupler, Open-collector output External use condition: 24 VDC maximum, 10 mA maximum					
		The signal is output when the excitation sequence is at STEP "0." (Photocoupler: ON)					
		High-torque type, standard type					
		Example) 1.8'/step (resolution 1): signal output every 4 pulses					
		0.45'/step (resolution 4): signal output every 16 pulses					
Output Signal	Evoltation Timing Signal	High-resolution type					
	Excitation mining Signal	Example) 0.9'/step (resolution 1): signal output every 4 pulses					
		0.225°/step (resolution 4): signal output every 16 pulses					
		•SH geared type (gear ratio 18:1)					
		Example) 0.1 [°] /step (resolution 1): signal output every 4 pulses					
		0.025 [°] /step (resolution 4): signal output every 16 pulses					
Function		Automatic current cutback, Step angle select, Pulse input mode switch, All windings off, Excitation timing					
Cooling Metho	d	Natural ventilation					

General Specifications

Specifications		Motor	Driver			
Insulation Class		Class B [130°C (266°F)]	-			
Insulation Resistance		$100\ M\Omega$ or more when 500 VDC megger is applied between the windings and the case under normal ambient temperature and humidity.	_			
Dielectric Strength		Sufficient to withstand 1.0 kV at 50 Hz or 60 Hz applied between the windings and the case for 1 minute under normal ambient temperature and humidity. [0.5 kV for models with frame size 42 mm (1.65 in.) or smaller]	_			
Ambient Temperat		-10~+50°C (+14~+122°F) (non-freezing)	$0 \sim +40^{\circ}$ C (+32 \sim +104°F) (non-freezing)			
(In operation)	Ambient Humidity	85% or less (non-condensing)				
	Atmosphere	No corrosive gases, dust, water or oil				
Temperature Rise		Temperature rise of windings are $80^{\circ}C$ ($144^{\circ}F$) or less measured by the resistance change method (at rated voltage, at standstill, two phases excited)	_			
Stop Position Accuracy*1		$\pm 3 \text{ arc minutes } (\pm 0.05^{\circ})$	-			
Shaft Runout		0.05 mm (0.002 in.) T.I.R.*4	_			
Radial Play*2		0.025 mm (0.001 in.) maximum of 5 N (1.12 lb.)	_			
Axial Play*3		0.075 mm (0.003 in.) maximum of 10 N (2.2 lb.)				
Concentricity		0.075 mm (0.003 in.) T.I.R.*4				
Perpendicularity		0.075 mm (0.003 in.) T.I.R.*4	_			

*1 This value is for full step under no load. (The value changes with the size of the load.)

*2 Radial Play: Displacement in shaft position in the radial direction, when a 5 N (1.12 lb.) load is applied in the vertical direction to the tip of the motor's shaft.

*3 Axial Play: Displacement in shaft position in the axial direction, when a 10 N (2.2 lb.) load is applied to the motor's shaft in the axial direction. *4 T.I.R. (Total Indicator Reading): The total dial gauge reading when the measurement section is rotated one revolution centered on the reference axis center.

Note:

• Do not measure insulation resistance or perform the dielectric strength test while the motor and driver are connected.

Permissible Overhung Load and Permissible Thrust Load

Туре	Model		Permissible				
		0	5 (0.2)	10 (0.39)	15 (0.59)	20 (0.79)	- Thiust Load
	CMK223P□P CMK224P□P CMK225P□P	25 (5.6)	34 (7.6)	52 (11.7)	_	_	
High-Torque Type	CMK233P□P CMK235P□P	20 (4.5)	25 (5.6)	34 (7.6)	52 (11.7)	_	
	CMK244P_P CMK246P_P	20 (4.5)	25 (5.6)	34 (7.6)	52 (11.7)	_	
High-Resolution Type	CMK243M_PA CMK244M_PA CMK245M_PA	20 (4.5)	25 (5.6)	34 (7.6)	52 (11.7)	-	The permissible
High-Resolution Type	CMK264M_P CMK266M_P CMK268M_P	54 (12.1)	67 (15)	89 (20)	130 (29)	_	no greater than the motor mass.
	CMK243_PA CMK244_PA CMK245_PA	20 (4.5)	25 (5.6)	34 (7.6)	52 (11.7)	-	
Standard Type	CMK256□P CMK258□P	54 (12.1)	67 (15)	89 (20)	130 (29)	_	
	CMK264_P CMK266_P CMK268_P	54 (12.1)	67 (15)	89 (20)	130 (29)	_	
	CMK223_P-SG7.2 CMK223_P-SG9 CMK223_P-SG10 CMK223_P-SG18 CMK223_P-SG36	15 (3.3)	17 (3.8)	20 (4.5)	23 (5.1)	_	10 (2.2)
SH Geared Type	CMK243_PA-SG3.6 CMK243_PA-SG7.2 CMK243_PA-SG9 CMK243_PA-SG10 CMK243_PA-SG18 CMK243_PA-SG36	10 (2.2)	15 (3.3)	20 (4.5)	30 (6.7)	_	15 (3.3)
	CMK264 PA-SG3.6 CMK264 PA-SG7.2 CMK264 PA-SG9 CMK264 PA-SG10	30 (6.7)	40 (9)	50 (11.2)	60 (13.5)	70 (15.7)	30 (6.7)
	CMK264_PA-SG18 CMK264_PA-SG36	80 (18)	100 (22)	120 (27)	140 (31)	160 (36)]

 \bullet Enter ${\bf A}$ (single shaft) or ${\bf B}$ (double shaft) in the box () within the model name.

Unit = N (lb.)

System Configuration

Product Line

Dimensions Unit = mm (inch)

Motor Model

PK223PA

PK223PB

PK224PA

PK224PB

PK225PA

PK225PB

Connector housing: 51065-0600 (MOLEX)

Contact: 50212-8100 (MOLEX) Crimp tool: 57176-5000 (MOLEX) L1

32

(1.26)

40

(1.57)

51.5

(2.03)

Motor lead wire/connector assembly of 0.6 m (2 ft.) is included with the package. UL Style

If you are purchasing only a motor for maintenance purpose, etc., motor lead wire/

Motor

1 28 mm (21.10 in.)

Model

CMK223PAP

CMK223PBP

CMK224PAP

CMK224PBP

CMK225PAP

CMK225PBP

Applicable Connector

3265, AWG24

→ Page 30

Controllers

If you are purchasing only a motor for maintenance purpose, etc., motor lead wire/

→ Page 30

 Applicable Connector Connector housing: 51103-0600 (MOLEX) Contact: 50351-8100 (MOLEX)

Crimp tool: 57295-5000 (MOLEX)

*The length of machining on double shaft model is 15±0.25 (0.591±0.010).

These dimensions are for double shaft models. For single shaft models, ignore the shaded () areas.

*The length of machining on double shaft model is 10±0.25 (0.394±0.010).

Mass

kg (lb.)

0.11

(0.24)

0.14

(0.31)

0.2

(0.44)

DXF

B326

B327

B328

L2

42 (1.65)

50 (1.97)

61.5 (2.42)

2 35 mm (1.38 in.)

Model	Motor Model	L1	L2	Mass kg (lb.)	DXF
CMK233PAP	PK233PA	37	-	0.18	P 220
CMK233PBP	PK233PB	(1.46)	52 (2.05)	(0.4)	D329
CMK235PAP	PK235PA	52	-	0.285	D 220
CMK235PBP	PK235PB	(2.05)	67 (2.64)	(0.63)	B330

Motor lead wire/connector assembly of 0.6 m (2 ft.) is included with the package. UL Style 3265, AWG24

connector assembly and connector will not be supplied. They must be purchased separately.

3 □42 mm (□1.65 in.)

Model	Motor Model	L1	L2	Mass kg (lb.)	DXF
CMK244PAP	PK244PA	39	-	0.3	D221
CMK244PBP	PK244PB	(1.54)	54 (2.13)	(0.66)	0001
CMK246PAP	PK246PA	59	-	0.5	D 222
CMK246PBP	PK246PB	(2.32)	74 (2.91)	(1.1)	DJJZ

Motor lead wire/connector assembly of 0.6 m (2 ft.) is included with the package. UL Style 3265. AWG24

If you are purchasing only a motor for maintenance purpose, etc., motor lead wire/connector

assembly and connector will not be supplied. They must be purchased separately.

→ Page 30

 Applicable Connector Connector housing: 51103-0600 (MOLEX) Contact: 50351-8100 (MOLEX) Crimp tool: 57295-5000 (MOLEX)

*The length of machining on double shaft model is 15 ± 0.25 (0.591±0.010)

◇High-Resolution Type, Standard Type

4 42 mm (1.65 in.)

	,				
Model	Motor Model	L1	L2	Mass kg (lb.)	DXF
CMK243APA	PK243-01AA			0.21 (0.46)	
CMK243MAPA	PK243MAA	33	_	0.24 (0.53)	00111
CMK243BPA	PK243-01BA	(1.3)	48	0.21 (0.46)	DUOTU
СМК243МВРА	PK243MBA		(1.89)	0.24 (0.53)	
CMK244APA	PK244-01AA			0.27 (0.59)	
CMK244MAPA	PK244MAA	39	_	0.3 (0.66)	DOODU
CMK244BPA	PK244-01BA	(1.54)	54	0.27 (0.59)	B0620
СМК244МВРА	PK244MBA	1	(2.13)	0.3 (0.66)	
CMK245APA	PK245-01AA			0.35 (0.77)	
CMK245MAPA	PK245MAA	47	_	0.37 (0.81)	DOODU
CMK245BPA	PK245-01BA	(1.85)	62	0.35 (0.77)	00030
CMK245MBPA	PK245MBA		(2.44)	0.37 (0.81)	

*The length of machining on double shaft model is 15±0.25 (0.591±0.010).

5 □50 mm (□1.97 in.)

Model	Motor Model	L1	L2	Mass kg (lb.)	DXF
CMK256AP	PK256-02A	51.5	-	0.53	0000
CMK256BP	PK256-02B	(2.03)	67.5 (2.66)	(1.17)	D333
CMK258AP	PK258-02A	81	-	0.89	D004
CMK258BP	PK258-02B	(3.19)	97 (3.82)	(1.96)	D334

◇High-Resolution Type, Standard Type

6 □56.4 mm (□2.22 in.)

Model	Motor Model	L1	L2	Mass kg (lb.)	DXF
CMK264AP	PK264-02A				
CMK264MAP	PK264MA	39	_	0.45	DU01
CMK264BP	PK264-02B	(1.54)	55	(0.99)	DU04
CMK264MBP	PK264MB		(2.17)		
CMK266AP	PK266-02A				
CMK266MAP	PK266MA	54	_	0.7	DOOF
CMK266BP	PK266-02B	(2.13)	70	(1.54)	D000
CMK266MBP	PK266MB		(2.76)		
CMK268AP	PK268-02A				
CMK268MAP	PK268MA	76	_	1.0	POOC
CMK268BP	PK268-02B	(2.99)	92	(2.2)	0000
CMK268MBP	PK268MB]	(3.62)		

♦ SH Geared Type

7 28 mm (21.10 in.)

Model	Motor Model	Gear Ratio	Mass kg (lb.)	DXF
CMK223AP-SG	PK223PA-SG□	7 2 0 10 10 26	0.16	DOOF
CMK223BP-SG	PK223PB-SG	1.2, 9, 10, 18, 30	(0.35)	6333

• Enter the gear ratio in the box (\Box) within the model name.

Motor lead wire/connector assembly of 0.6 m (2 ft.) is included with the package. UL Style 3265, AWG24

If you are purchasing only a motor for maintenance purpose, etc., motor lead wire/connector assembly and connector will not be supplied. They must be purchased separately.

- → Page 30
- Screws (Included)
- M2.5 Length 8 mm (0.31 in.) ··· 4 Pieces
- Applicable Connector

Connector housing: 51065-0600 (MOLEX) Contact: 50212-8100 (MOLEX) Crimp tool: 57176-5000 (MOLEX)

*The length of machining on double shaft model is 10 ± 0.25 (0.394±0.010).

8 42 mm (1.65 in.)

Model	Motor Model	Gear Ratio	Mass kg (lb.)	DXF
CMK243APA-SG	PK243A1A-SG	3.6 , 7.2 , 9 , 10,	0.35	P00111
CMK243BPA-SG	PK243B1A-SG	18, 36	(0.77)	00910

• Enter the gear ratio in the box (\Box) within the model name.

Screws (Included)

No.4-40 UNC 10 mm (0.39 in.)

4×M2.5×4 (0.16) Deep

9 60 mm (2.36 in.)

Driver

10 Driver Model: CMD2109P, CMD2112P, CMD2120P Mass: 0.05 kg (0.11 lb.) **DXF** B441

Note:

• Use the included connector for power supply, signal and motor. When assembling the connectors, use the hand-operated crimp tool [57295-5000 (MOLEX)]. The crimp tool is not included with the package. It must be purchased separately.

Driver lead wire set crimped with connector (sold separately) is available. -> Page 30

Product Line

Accessories

Connection and Operation

Names and Functions of Driver Parts

1 Power Input Display

Color	Function	When Activated
Green	Power supply indication	Lights when power is on.

2 Current Adjustment Switch

Indication	Switch Name	Function
RUN	Motor run current switch	For adjusting the motor running current
STOP	Motor stop current potentiometer	For adjusting the current at motor standstill

3 Function Select Switch

Indication	Switch Name	Function
1	Pulse input mode switch	Switches between 1-pulse input and 2-pulse input.
2, 3, 4	Step angle setting switch	These switches can be set to the desired resolution from the five resolution levels.

Step Angle Setting Switch

SW-2	SW-3	SW-4	Microstep/Step	Resolution	Step Angle
0FF	0FF	0FF	1	200	1.8°
0FF	0FF	ON	2	400	0.9°
0FF	ON	0FF	4	800	0.45°
0FF	ON	ON	8	1600	0.225°
ON	0FF	OFF	16	3200	0.1125°

Notes:

- Use of any setting other than the combinations listed in the table will automatically set the microstep to "1" and the motor will operate at the basic step angle.
- The step angle is calculated by dividing the basic step angle by the number of microsteps. The above figures are based on a basic step angle of 1.8°.
- With the high-resolution type, the basic step angle and resolution are 0.9° and 400 respectively.
- The step angle set with the step angle setting switches will become effective when the "Step Angle Select" (CS) signal input is OFF.
- Do not change the CS (step angle select) signal input or step angle setting switches while the motor is operating. It may cause the motor to misstep and stop. Change the step angle setting switches, when the "Step Angle Select" signal input is OFF and the "Excitation Timing" signal output is ON.

4 Input/Output Signal

Indication	Input/ Output	Pin No.	Signal Name	Function	
		1	Pulse signal	Operation command pulse signal	
		2	(CW pulse signal)	when in 2-pulse input mode.)	
		3	Rotation direction	Rotation direction signal Photocoupler OFF: CCW,	
		4	signal (CCW pulse signal)	(The motor will rotate in the CCW direction when in 2-pulse input mode.)	
Input signal	5	All windings off	Cuts the output current to the motor and		
	signal	6	signal	external force.	
		7	Step angle select signal	The motor will operate at the basic step	
		8		step angle setting switches.	
		9	Automatic current	This signal is used to disable the	
		10	signal	automatic current cutback function.	
	Output	11	Excitation timing	Outputs signals when the excitation	
signal	12	signal	sequence is at STEP "0."		

System Configuration

Connection Diagrams

Description of Input/Output Signals

Indication of Input/Output Signal "ON""OFF"		
Input (Output) "ON" indicates that the current is sent into the photocoupler (transistor) inside the driver. Input (Output) "OFF" indicates that the current is not sent into the photocoupler (transistor) inside the driver. The input/output remains "OFF" if nothing is connected.	Photocoupler	OFF ON

Pulse (CW) and Rotation Direction (CCW) Input Signal

◇Input Circuit and Sample Connection

• 1-Pulse Input Mode

◇Input Signal Connection

Pulse (CW) Signal/Rotation Direction (CCW) Signal

Signals can be connected directly when 5 VDC is supplied. When the voltage exceeds 5 VDC, connect an external resistor (R₁) to keep input current at 20 mA or less. When 5 VDC or more is supplied without the external resistor, the internal components get damaged.

- Example: If the voltage is 24 VDC, connect a resistor (R1) of 1.5 to 2.2 $k\Omega$ and 0.5 W or more.
- All Windings Off Signal/Step Angle Select Signal/Automatic Current Cutback Release Signal
- Signals can be connected directly when 5 to 24 VDC is supplied.

Output Signal Connection

Use the output signal at 24 VDC or less and 10 mA or less. If these specifications are exceeded, the internal components may get damaged. Check the specification of the connected equipment. If the current exceeds 10 mA, connect an external resistor R₂.

◇Power Supply

Use a power supply that can supply sufficient input current. When power supply capacity is insufficient, a decrease in motor output can cause the following malfunctions:

- Motor does not rotate properly at high-speed.
- Slow motor startup and stopping

♦ Notes on Wiring

- Use twisted-pair wires of AWG24 to 22 (0.2 to 0.3 mm²) and 2 m (6.6 ft.) or less in length for the signal lines.
- Note that as the length of the pulse signal line increases, the maximum transmission frequency decreases.
- Use wires of AWG22 (0.3 mm²) for power supply lines. When assembling the connectors, use the hand-operated crimp tool or driver lead wire set crimped with connector (sold separately). The crimp tool is not included with the package. It must be purchased separately.
- Signal lines should be kept at least 2 cm (0.79 in.) away from power lines (power supply lines and motor lines). Do not run the signal lines in the same duct as power lines or bundle them together.
- If noise generated by the motor cable or power supply cable causes a problem, try shielding the cables or insert ferrite cores.
- Incorrect connection of DC power input will lead to driver (circuit) damage. Make sure that the polarity is correct before turning power on.

• 2-Pulse Input Mode

- *1 The shaded area indicates when the photocoupler diode is ON. The motor moves when the photocoupler state changes from ON to OFF.
- *2 The minimum interval time when changing rotation direction 10 μs is shown as a response time of circuit. This value varies greatly depending on the motor type and load inertia.

◇Pulse Signal Characteristics

- Keep the "Pulse" signal at the "photocoupler OFF" state when no pulses are being input.
- In 1-pulse input mode, leave the "Pulse" signal at rest ("OFF") when changing rotation directions.
- In 2-pulse input mode, do not input a CW pulse and CCW pulse simultaneously.

Product Line

Controllers

All Windings Off (AWO)/Step Angle Select (CS)/Automatic Current Cutback Release (ACDOFF) Input Signal

◇All Windings Off (AWO) Input Signal

Inputting this signal puts the motor in a non-excitation (free) state.
 This signal is used when moving the motor by external force or perform positioning manually. The photocoupler must be "OFF" when operating the motor.

when operating the motor.

The shaded area indicates that the motor provides holding torque in proportion to standstill current set by STOP potentiometer.

•Switching the "All Windings Off" signal from "photocoupler ON" to "photocoupler OFF" does not alter the excitation sequence. When the motor shaft is manually adjusted with the "All Windings Off" signal input, the shaft will shift up to $\pm 3.6^{\circ}$ (geared type: $\pm 3.6^{\circ}$ /gear ratio) from the position set after the "All Windings Off" signal is released.

- •When this signal input is "ON," the motor will operate at the basic step angle regardless of the settings of the step angle setting switches. When the signal input is "OFF," the motor will operate at the step angle set with the step angle setting switches.
- •To change the step angle, do so when the "Excitation Timing" signal output is "ON" and the motor is at standstill.

- •When this signal is in the "photocoupler ON" state, the automatic current cutback function is disabled. When this signal is in the "photocoupler OFF" state, the automatic current cutback function will be activated after the motor stops (after approx. 100 ms).
- The photocoupler must be "OFF" when the motor is operating.

Excitation Timing (TIM) Output Signal

◇Output Circuit and Sample Connection

•The "Excitation Timing" signal is output when the motor excitation is in the initial stage (step "0").

•The "Excitation Timing" signal is output simultaneously with a pulse input each time the excitation sequence returns to step "0." The excitation sequence will complete one cycle for every 7.2° (3.6° for high-resolution type) rotation of the motor output shaft. Microstep/step 1: Signal is output once every 4 pulses.

Microstep/step 4: Signal is output once every 16 pulses.

Timing chart at 1.8°/step (microstep/step 1)

* When connected as shown in the sample connection, the signal will be "photocoupler ON" at step "0."

Notes:

When power is turned on, the excitation sequence is reset to step "0" and the "Excitation Timing" signal will be output.

 When operating the motor using the "Excitation Timing" signal output, make sure the motor output shaft stops at an integral multiple of 7.2° (3.6° for high-resolution type). Timing Chart

The section indicates that the photocoupler diode is emitting light.

*1 The minimum switching time to change rotation direction signal (1-pulse input mode), and switching time to change CW, CCW pulse (2-pulse input mode) 10 µs is shown as a response time of circuit. The motor may need more time.

*2 Depends on load inertia, load torque and starting frequency.

*3 Never input a pulse signal immediately after switching the "All Windings Off" signal to "photocoupler OFF." The motor may not start.

*4 Wait at least five seconds before turning on the power again.

List of Motor and Driver Combinations

Model names for motor and driver combinations are shown below.

Туре	Model	Motor Model	Driver Model	Туре	Model	Motor Model	Driver Model		
High-Torque Type	CMK223PAP CMK223PBP	PK223PA* PK223PB*			CMK223AP-SG7.2 CMK223BP-SG7.2	PK223PA-SG7.2* PK223PB-SG7.2*			
	CMK224PAP	PK224PA*	CMD2100P		CMK223AP-SG9	PK223PA-SG9*			
	CMK224PBP	PK224PB*	CMD2107F		CMK223BP-SG9	PK223PB-SG9*			
	CMK225PAP	PK225PA*			CMK223AP-SG10	PK223PA-SG10*			
	CMK225PBP	PK225PB*			CMK223BP-SG10	PK223PB-SG10*			
	CMK233PAP	PK233PA*			CMK223AP-SG18	PK223PA-SG18*			
	CMK233PBP	PK233PB*			CMK223BP-SG18	PK223PB-SG18*			
	CMK235PAP	PK235PA*			CMK223AP-SG36	PK223PA-SG36*			
	CMK235PBP	PK235PB*	CMD2112P		CMK223BP-SG36	PK223PB-SG36*			
	CMK244PAP	PK244PA*	CMDZTTZF		CMK243APA-SG3.6	PK243A1A-SG3.6	CMD0100D		
	CMK244PBP	PK244PB*			CMK243BPA-SG3.6	PK243B1A-SG3.6	CMD2109P		
	CMK246PAP	PK246PA*			CMK243APA-SG7.2	PK243A1A-SG7.2			
	CMK246PBP	PK246PB*			CMK243BPA-SG7.2	PK243B1A-SG7.2			
	CMK243MAPA	PK243MAA	CMD2100D		CMK243APA-SG9	PK243A1A-SG9			
	CMK243MBPA	PK243MBA	CMD2109P		CMK243BPA-SG9	PK243B1A-SG9			
	CMK244MAPA	PK244MAA		SH Geared	CMK243APA-SG10	PK243A1A-SG10			
	СМК244МВРА	PK244MBA	CMD2112P	Type	CMK243BPA-SG10	PK243B1A-SG10			
	CMK245MAPA	PK245MAA		1360	CMK243APA-SG18	PK243A1A-SG18			
	CMK245MBPA	PK245MBA			CMK243BPA-SG18	PK243B1A-SG18			
High-Resolution Type	СМК264МАР	PK264MA			CMK243APA-SG36	PK243A1A-SG36			
	CMK264MBP	PK264MB			CMK243BPA-SG36 PK243B1A	PK243B1A-SG36			
	CMK266MAP	PK266MA	0.1501005			DK244A2A SC24			
	CMK266MBP	PK266MB	CMD2120P		CMK204APA-503.0	PKZ04AZA-3G3.0			
	CMK268MAP	PK268MA			CMR2040FA-303.0	PK20402A-303.0			
	CMK268MBP	PK268MB			CMK264RDA-567.2	PK264R2A-307.2			
	СМК243АРА	PK243-01AA			CMK264APA-307.2	PK26462A-5G7.2			
	CMK243BPA	PK243-01BA	CMD2109P		CMK264RDA.SGO	PK264B2A-SC9			
	CMK244APA	PK244-016A			CMK264APA-507	PK26462A-SC-10	CMD2120P		
	CMK244RPA	PK244-0184			CMK264BPA-SG10	PK264B2A-SG10			
	CMK245APA	PK245-0144	CMD2112P		CMK264APA-SG18	PK264A2A-SG18			
	CMK245BPA	PK245-01BA			CMK264BPA-SG18	PK264B2A-SG18			
	CMK256AP	PK256-02A			CMK264APA-SG36	PK264A2A-SG36			
	CMK256RD	PK256-02B			CMK264BPA-SG36	PK264B2A-SG36			
Standard Type	CMK258AP	PK258-02A							
	CMK258RP	PK258-02B		If you are pur	chasing only a motor for main	tenance purpose, etc., m	otor lead wire/connect		
	CMK264AP	PK264-02A		assembly and	I connector will not be supplie	d. They must be purchase	ed separately.		
	CMK264BP	PK264-02B	CMD2120P	An accessory	motor lead wire/connector as	sembly is available.			
	CMK266AP	PK266-02A		→ Page 30					
	CMK266BP	PK266-02B							
	CMK268AP	PK268-02A							
	CMK268BP	PK268-02B							

Dimensions

Accessories (Sold separately)

Motor Mounting Brackets

Mounting brackets are convenient for installation and securing a stepping motor and geared stepping motor.

Product Line

High-Torque Type, High-Resolution Type, Standard Type
Material: Aluminum alloy

Model	Applicable Product
PAFOP	CMK24_P_P
	CMK24 M PA
PALOPA	
	CMK26 M P
PALZP-Z	CMK26

ullet Enter the motor case length in the box (\Box) within the model name.

- Enter **A** (single shaft) or **B** (double shaft) in the box () within the model name.
- The mounting bracket base is built with holes large enough to allow for alignment adjustments in the horizontal direction.
- These mounting brackets can be perfectly fitted to the pilot of the stepping motors. (Except for PALOPA)

Note:

They cannot be used with geared stepping motors.

Motor Installation Direction

The motor cable comes out at right angles to the motor. Orient the motor so that the cable faces either upward or sideways.

•SH Geared Type

Material: Aluminum alloy

Model	Applicable Product
SOLOA-A	CMK243 PA-SG
SOL2A-A	CMK264 PA-SG

- Enter A (single shaft) or B (double shaft) in the box () within the model name. Enter the gear ratio in the box () within the model name.
- The mounting bracket base is built with holes large enough to allow for alignment adjustments in the horizontal direction.
- No screws are supplied for installing. Provide appropriate screws separately.

Cable Facing Upward

Cable Facing Sideways

Installation of the Motor PAL2P-2

①Use the screws provided to secure the motor to the mounting bracket.②Attach the motor from the direction shown

by the arrow (B).

2 PALOPA, SOLOA-A, SOL2A-A

 Use the screws provided to secure the motor to the mounting bracket.
 (No screws are supplied for SOLOA-A and SOL2A-A. Provide appropriate screws separately.)

②Attach the motor from the direction shown by the arrow (B).

3 PAFOP

 Use the screws provided to secure the motor to the mounting bracket.
 Attach the motor from the direction shown by either arrow (A) or arrow (B). System Configuration

Dimensions Unit = mm (inch)

PALOPA Mass: 35 g (1.24 oz.)

DXF B139

Screws (Included)
 M3 Length 7 mm (0.28 in.) ··· 4 Pieces

Screws (Included)
 No. 4-40 UNC ··· 4 Pieces

PAL2P-2 Mass: 110 g (3.9 oz.) DXF B144

Screws (Included)

SOLOA-A

M4 Length 12 mm (0.47 in.) ··· 4 Pieces

System Configuration

Flexible Couplings

A flexible coupling ideal for your motor is available. Once you have decided on a motor and/or gear, you can select the recommended coupling easily. All motor shaft diameters of stepping motor packages are available (including geared motors).

Features of MCS Couplings

This three-piece coupling adopts an aluminum alloy hub and a resin spider. The simple construction ensures that the high torque generated by a geared motor can be transmitted reliably. The proper elasticity of the spider suppresses motor vibration.

• High strength (usable for geared motor) has been realized.

- The resin spider (material: polyurethane) controls the vibration generated by the motor.
- No backlash

Product Number Code MCS 30 08 12

(1)	MCS Couplings
0	i i i i i i i i i i i i i i i i i i i

0	Outer Diameter of Coupling
Ľ	Outer Diameter of Coupling

3 Inner Diameter d1 (Smaller side) [F04 represents \$\phi6.35 mm (\$\phi0.25 in.).]

(4) Inner Diameter d2 (Larger side) [**F04** represents ϕ 6.35 mm (ϕ 0.25 in.).]

Product Line

Model
MCS14
MCS20
MCS30

		Motor Shaft	_	Driven Shaft Diameter mm (in.)							
Model	Gear Ratio	Diameter mm (in.)	Туре	ф4 (ф0.1575)	ф5 (ф0.1969)	ф6 (ф0.2362)	ф6.35 (ф0.25)	ф8 (ф0.315)	ф10 (ф0.3937)	φ12 (φ0.4724)	
CMK22_P_P CMK23_P_P CMK244P_P CMK24_PA CMK24_PA	_	φ5 (10.1000)	MCS14	•	•	•					
CMK223□P-SG	7.2, 9, 10, 18, 36	(ф0.1969)									
CMK243 PA-SG	3.6, 7.2, 9, 10, 18, 36										
СМК246Р□Р	-	ф5 (ф0.1969)			•	•	•	•			
CMK256_P CMK264_P CMK266_P CMK264M_P CMK266M_P	-	ф6.35 (ф0.25)	MCS20		•	•	٠	•	٠		
CMK258 CMK268 CMK268M P	_	ф6.35 (ф0.25)	MCS30			•	•	•	•		

Coupling Selection Table

• Enter A (single shaft) or B (double shaft) in the box (
) within the model name.

Enter the motor case length in the box () within the model name. Enter the gear ratio in the box () within the model name.

NCS30	

• Enter the inner diameter of coupling in the box (
) within the model name.

Product Line

Specifications, Characteristics

Dimensions

Connection and Operation

Motor and Driver Combinations

Specifications

00	
nfig	Syc
lurat	stem
ion	

Controllers

	Dimensions					Normal		Moment of	Static Torsion	Permissihle	Permissible	Permissihle		
Model	Outer Diameter	Length W	Axis Hole Diameter	Axis Hole Diameter	Key Slot Tolerance	L	Screw Used	Torque	Mass	Inertia	Spring Constant	Eccentricity	Declination	End Play
	фА mm (in.)	mm (in.)	d1 H7 mm (in.)	d2 H7 mm (in.)	b/t mm (in.)	mm (in.)	м	N ⋅ m (Ib-in)	g (oz.)	kg · m ² (oz-in ²)	N · m/rad (Ib-in/rad)	mm (in.)	deg	mm (in.)
MCS140405			4 (0.1575)	5 (0.1969)										+0.6
MCS140505	14 (0.551)	22 (0.87)	5 (0.1969)	5 (0.1969)	_	7 (0.28)	M2	2.0 (17.7)	6.7 (0.24)	0.184×10 ⁻⁶) (0.01)	22.9 (200)	0.06 (0.0024)	0.9	(+0.024)
MCS140506			5 (0.1969)	6 (0.2362)										
MCS200505			5 (0.1969)	5 (0.1969)										
MCS200506			5 (0.1969)	6 (0.2362)										
MCS2005F04			5 (0.1969)	6.35 (0.25)										
MCS200508		5 (0.1969) (0 6 (0.2362) (8 (0.315)											
MCS2006F04			6 (0.2362)	6.35 (0.25)		10 (0.39)	M2.5	5.0 (44)	19.8 (0.7)	1.059×10 ⁻⁶ (0.058)	51.6 (450)	0.08 (0.0031)		$\begin{pmatrix} +0.8\\ 0\\ (+0.031\\ 0\end{pmatrix}$
MCS200608	20 (0.787)	30 (1.18)	6 (0.2362)	8 (0.315)									0.9	
MCS20F04F04			6.35 (0.25)	6.35 (0.25)										
MCS20F0408			6.35 (0.25)	8 (0.315)										
MCS20F0410			6.35 (0.25)	10 (0.3937)										
MCS200808			8 (0.315)	8 (0.315)										
MCS200810			8 (0.315)	10 (0.3937)										
MCS3006F04			6 (0.2362)	6.35 (0.25)										
MCS300608			6 (0.2362)	8 (0.315)								0.09		
MCS30F04F04			6.35 (0.25)	6.35 (0.25)										
MCS30F0408	30	35	6.35 (0.25)	8 (0.315)		11	MO	12.5	44.6	6.057×10 ⁻⁶	171.9		0.0	0
MCS30F0410	(1.181)	(1.38) 6.35 10 (0.25) (0.3937)	_	(0.43)	IVIS	(110)	(1.57)	(0.33)	(1500)	(0.0035)	0.9	$\left(\begin{smallmatrix} +0.039\\ 0 \end{smallmatrix} \right)$		
MCS300808			8 (0.315)	8 (0.315)										
MCS300810			8 (0.315)	10 (0.3937)										
MCS300812			8 (0.315)	12 (0.4724)										

Dimensions

 MCS14
 Mass: 6.7 g (0.24 oz.)

 MCS20
 Mass: 19.8 g (0.7 oz.)

 MCS30
 Mass: 44.6 g (1.57 oz.)

Mounting to a Shaft

Clamp Type

Clamp couplings use the tightening force of the screw to compress the shaft hole diameter and thereby fasten the coupling to the shaft. This does not damage the shaft and is easy to mount and remove. The following table shows the screw tightening torque. We recommend use of a torque wrench to fasten the coupling.

Туре		MCS14	MCS20	MCS30	
Tightening Torque	N∙m (oz-in)	0.37 (52)	0.76 (107)	1.34 (190)	

28

Alignment Adjustment

Flexible couplings tolerate misalignment of the axis center and transfer rotational angle and torque, but produce vibration when the permissible value for misalignment is exceeded. This can dramatically shorten the coupling's service life. This requires alignment adjustment.

Misalignment of the axis center includes eccentricity (parallel error of both centers), declination (angular error of both centers) and end play (shaft movement in the axial direction). To keep misalignment within the permissible value, always check and adjust the alignment. To increase the service life of the coupling, we recommend keeping misalignment below 1/3 of the permissible value.

Notes:

• When misalignment exceeds the permissible value or excessive torque is applied, the coupling's shape will deform, and service life is shortened.

When the coupling emits a metallic sound during operation, stop operation immediately and ensure there is no misalignment, axis interference or loose screws.
 When load changes are large, apply an adhesive to the coupling set screw to prevent the coupling screw from loosening.

Clean Dampers 📾

Mechanical dampers suppress stepping motor vibration and improve high-speed performance. An inertia body and silicon gel are hermetically sealed in a plastic case.

Features

- Excellent vibration absorption
- The doughnut-shaped internal inertia body and silicon gel absorb vibration. This feature enables a stable damping effect.
- Since there is no frictional dust as in conventional magnetic dampers, it can be used in environments where higher degrees of cleanness is needed.
- High reliability
- It holds up well in harsh environments and changes little with age because the silicon gel and plastic case used are heat resistant.
- Machine part is sealed hermetically in a plastic case. This ensures safety and doesn't generate noise.

Product Line

Model	Moment of Inertia kg·m² (oz-in²)	Mass g (lb.)	Applicable Product
D4CL-5.0F	34×10⁻ (0.186)	24 (0.053)	CMK22 PBP CMK23 PBP CMK24 PBP CMK24 MBPA CMK24 BPA CMK223BP-SG CMK243BPA-SG
D6CL-6.3F	140×10 ⁻⁷ (0.77)	62 (0.136)	CMK26 CMK25 BP CMK26 BP CMK264BPA-SG

Ambient Temperature: -20 to +80°C (-4 to +176°F)

lacksquare Enter the motor case length in the box () within the model name.

Enter the gear ratio in the box () within the model name.

Installation of the Clean Damper

Dimensions Unit = mm (inch)

Cables

Driver Lead Wire Set Rolls

As an accessory for DC input drivers, lead wires with a connector are available. Crimping is not necessary, and the connection with the motor, power supply, input/output signal is also easy. The driver lead wire set includes three lead wire/ connector assemblies (for motor, power supply and input/output signals).

Product Line

Model	Applicable Driver	Length m (ft.)
LCS01CMK2	CMD2109P CMD2112P CMD2120P	0.6 (2)

Point the mounting screws of the clean damper toward the motor case, fasten to the shaft and tighten the damper's mounting screws (2 places) with an allen wrench to secure it to the shaft.

(=				
Туре		D4CL-5.0F	D6CL-6.3F	
Tightening Torque	N∙m (oz-in)	0.4 (56)	1.5 (210)	

Notes:

 There are mounting screws with hexagonal holes in two damper locations, so tighten them both before running the motor.

 The damper rotates at the same speed as the motor shaft, so do not touch it while the motor is running.

Model	фd1	φA	φB	С	D	E
D4CL-5.0F	5 ^{+0.018} (0.1969 ^{+0.0007})	φ36±0.5 (φ1.42± 0.02)	φ13±0.5 (φ0.51± 0.02)	9±0.3 (0.354± 0.012)	15±0.5 (0.591± 0.02)	М3
D6CL-6.3F	$(0.2500^{+0.0009}_{0})$	φ44.5±0.5 (φ1.75± 0.02)	φ20±0.5 (φ0.79± 0.02)	15±0.3 (0.591± 0.012)	22±0.5 (0.87± 0.02)	M4

Motor Lead Wire/ Connector Assembly (Ref)

These lead wires with connectors are available for connection with the motor, eliminating the need for assembling a connector. [A motor lead wire/connector assembly of 0.6 m (2 ft.) is included with the motor and driver package for the connector-coupled types.]

Product Line

Model	Applicable Product	Applicable Motor	Length m (ft.)
LC2U06A	CMK22 PPP	PK22□P□	0.6 (2)
LC2U10A	CMK223 P-SG	PK223P-SG	1 (3.3)
LC2U06B	CMK23 PPP	PK23□P□	0.6 (2)
LC2U10B	CMK24□P <mark></mark> P	PK24□P	1 (3.3)

ullet Enter the motor case length in the box (\Box) within the model name.

Enter **A** (single shaft) or **B** (double shaft) in the box (\square) within the model name. Enter the gear ratio in the box (\square) within the model name.

Dimensions

Product Line

Controllers (Sold separately)

Controller for Stepping Motors

SG8030J Refis

Features

All operations including data setting can easily be performed using the four touch pads on the top panel. In addition, the number of signal lines is reduced to a minimum for easy connection.

- Jerk limiting control function to suppress vibration during motor operation
- Supporting sequential-step positioning operation and external signal operation
- Maximum oscillation frequency: 200 kHz
- I-pulse/2-pulse output mode switching

Stored Program Controller

EMP400 Series Imm

Features

In addition to the superior oscillation function reflecting Oriental Motor's wealth of expertise in motor design and manufacturing, the **EMP** Series also provides the I/O control function and the sequence function that allows for programming of a series of operation.

- Allowing the input of 32 sequence programs
- Various operation patterns
- Teaching function

You can adjust the travel amount via teaching or monitor the current position, using an accessory operator interface unit **OP300**.

No need for dedicated software

Sample Program

Recessed Mounting Model

Product Line

Operator Interface Unit (Sold separately) [Communication cable: 2 m (6.6 ft.) included]

Product Line

Model	Number of Axis	Connector
EMP401-1	Single Avie	Without connectors
EMP401-2	Siligie Axis	With connectors
EMP402-1	Dual Avia	Without connectors
EMP402-2	Duai AXIS	With connectors

Operator Interface Unit OP300

[1] VS1_500	; Starting speed 500 Hz
[2] V1 _L 1000	; Operating speed 1000 Hz
[3] T1∟30.0	; Acceleration/deceleration rate 30.0 ms/kHz
[4] D1 _⊔ +11000	; Travel amount 11 000 pulses in CW direction
[5] INC1	; Execute relative positioning operation

Dual Axis

Product Line

Specifications, Characteristics

Dimensions

Connection and

Motor and Driver

Combinations

Operation

Accessories (Sold separately)

Operator Interface Unit OP300 (RoHS)

Communication Cable FC04W5 (RoHS)

PC end of the communication cable.

position

Series.

signal names • DIN-rail mountable • Cable length: 1 m (3.3 ft.)

•Used for the EMP Series

We have a range of accessory cables that allow for easy connection between the **EMP400** Series and peripherals, as well as an operator interface unit used for teaching operation.

You can set the travel amount via teaching or monitor the current

Use the included cable [length: 2 m (6.6 ft.)] for connection with the EMP

A communication cable [length 5 m (16.4 ft.)] for connecting the **EMP** Series to a PC. A D-sub. 9-pin (female) connector is attached on the

Connector – Terminal Block Conversion Unit CC50T1 (Rolls) A conversion unit that connects a half-pitch connector of the EMP Series using a terminal block [cable length: 1 m (3.3 ft.)].

• With a signal name plate for easy, one-glance identification of driver

Onerator Interface Unit

This product is manufactured at a plant certified with the international standards **ISO 9001** (for quality assurance) and **ISO 14001** (for systems of environmental management).

Specifications are subject to change without notice. This catalog was published in September, 2007.

ORIENTAL MOTOR U.S.A. CORP.

Western Sales and Customer Service Center

Tel: (310) 715-3301 Fax: (310) 225-2594 Dallas

Tel: (214) 432-3386 Los Angeles Tel: (310) 715-3301 San Jose Tel: (408) 392-9735

Technical Support

Tel: (800) 468-3982 / 8:30 а.м. to 5:00 рм., P.S.T. (M–F) 7:30 а.м. to 5:00 рм., C.S.T. (M–F) E-mail: techsupport@orientalmotor.com

Midwest Sales and Customer Service Center Tel: (847) 285-5100 Fax: (847) 843-4121

Chicago Tel: (847) 285-5100 Toronto Tel: (905) 502-5333

Eastern Sales and Customer Service Center Tel: (781) 848-2426 Fax: (781) 848-2617

Boston Tel: (781) 848-2426 Charlotte Tel: (704) 696-1036 New York Tel: (973) 359-1100

Obtain Specifications, Online Training and Purchase Products at: www.orientalmotor.com

Copyright ©2007 ORIENTAL MOTOR U.S.A. CORP.

