

5-Phase Stepping Motor and Driver Package **CSK** Series

Additional Information

Technical ReferenceF-1	
General InformationG-1	

Stepping Motors

5-Phase Stepping Motor and Driver Package **CSK** Series

The **CSK** Series combines a 5-phase stepping motor and a 24 VDC input board-level driver to provide high torque, high resolution and low vibration in a compact package.

The **CSK** Series features **PK** motors, designed to produce high torque in a compact frame size.

Low Vibration

Smooth rotation is achieved with no noticeable resonance, allowing for low vibration and low noise.

Compact Package

Both the motor and driver are compact in design, making them perfect for reducing the size and weight of any system.

High Resolution

5-phase stepping motors move 0.72° per step in full-step mode and 0.36° per step in half-step mode -2.5 times the resolution of a 2-phase stepping motor. This mechanically reduced step angle makes for extremely accurate positioning.

Tapered Hobbed (TH) Geared Type

These low backlash geared stepping motors provide high permissible torque in a compact size. They are optimal for applications in which high torque is required in tight spaces.

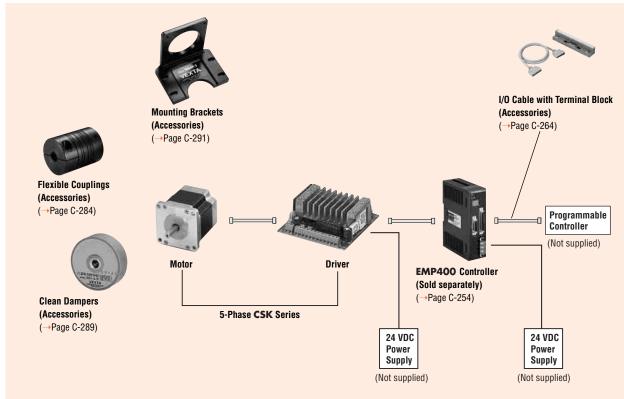
Safety Standards and CE Marking

Product	Standards	Certification Body	File No.	CE Marking
	UL1004, UL519			
Stepping Motor	CSA C22.2 No.77	UL	E64199	
	CSA C22.2 No.100			
	UL508C		F171460	EMC Directives
Driver	CSA C22.2 No.14	UL	E171462	
Duver	UL1950	111	F208200	-
	CSA C22.2 No.950	UL	E208200	

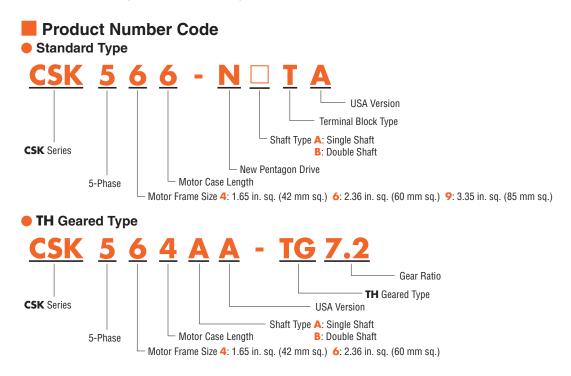
Approval conditions for UL1950: Class
 equipment, SELV circuit, Pollution degree 2

• CSK54 [Motor frame size: 1.65 in. sq (42 mm sq.)] types do not comply with CSA standards.

• CSK59 [Motor frame size: 3.35 in. sq (85 mm sq.)] type is not recognized by UL and CSA.


• When the system is approved under various safety standards, the model names on the motor and driver nameplates are the approved model names.

List of Motor and Driver Combinations→Page C-134


• Details of Safety Standards→Page G-2

 The EMC value changes according to the wiring and layout. Therefore, the final EMC level must be checked with the motor/driver incorporated in the user's equipment.

System Configuration

An example of a single-axis system configuration with the EMP400 Series controller.

Product Line

Tuno	Power Supply Voltage	Maximum Holding Torque				
Туре	Fower Suppry Voltage	🗆 1.65 in. (42 mm)	🗆 2.36 in. (60 mm)	🗆 3.35 in. (85 mm)		
Standard Type	24 VDC	(0.13~0.24 N·m) (0.42~1.66 N·m) (2.1~		290∼890 oz-in (2.1∼6.3 N⋅m)		
TH Geared Type	24 VDC	3~13.2 lb-in (0.35~1.5 N⋅m)	11∼35 lb-in (1.25∼4 N⋅m)	_		

Introduction

AS

AS PLUS

ASC

RR

CFKI

PMC

UMK

2-Phase Full/Half AC Input DC Inpu

DC Input CSK

Encoder

Encode

UI2120G EMP402 SG8030J

SMK Notors

Accessories

with Ŗ

Driver with Indexer

Controllers

PK/PV without

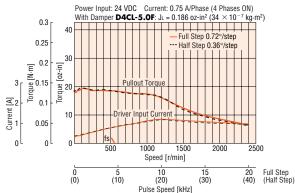
2-Phase Stepping Motors

Closed Loop *Closed* Loop *Closed* Loop *Closed* Loop *Closed*

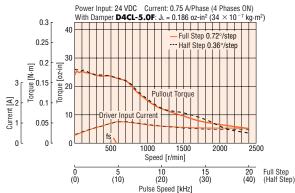
AC Input

Standard Type

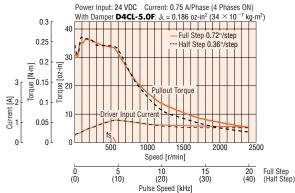
Specifications


C**₩1**usC€

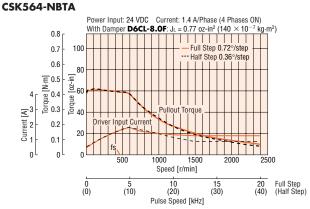
•	Cingle Choff	CCI/CAO NIATA	CCVCAA NIATA	COVE AF NIATA	CCVCCA NATA	CCVC// NIATA	CCVCCO NATA	
Model	Single Shaft					CSK566-NATA		
	Double Shaft	CSK543-NBTA	CSK544-NBTA	CSK545-NBTA	CSK564-NBTA	CSK566-NBTA	CSK569-NBTA	
Maximum Holding Torque	oz-in (N∙m)	18.4 (0.13)	25 (0.18)	34 (0.24)	59 (0.42)	117 (0.83)	230 (1.66)	
Rotor Inertia J	oz-in ² (kg·m ²)	0.191 (35×10 ⁻⁷)	0.3 (54×10 ⁻⁷)	0.37 (68×10 ⁻⁷)	0.96 (175×10 ⁻⁷)	1.53 (280×10 ⁻⁷)	3.1 (560×10 ⁻⁷)	
Rated Current	A/phase	0.75 1.4						
Basic Step Angle		0.72°						
Power Source		24 VDC±10% 1.3 A 24 VDC±10% 2.1 A				١		
Excitation Mode		• Full Step (4 phase excitation): 0.72°/step						
		 Half Step (4-5 phase excitation): 0.36°/step 						
Weight	Motor lb. (kg)	0.46 (0.21)	0.59 (0.27)	0.77 (0.35)	1.3 (0.6)	1.8 (0.8)	2.9 (1.3)	
Weight	Driver lb. (kg)	(kg) 0.31 (0.14)						
Dimension No.	Motor		1			2		
	Driver		<u> </u>					


How to read specifications table $\rightarrow \mbox{Page C-9}$

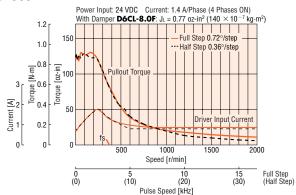
Speed — Torque Characteristics How to Read Speed-Torque Characteristics → Page C-10


CSK543-NBTA

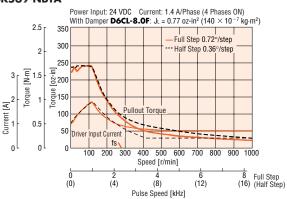
CSK544-NBTA



CSK545-NBTA

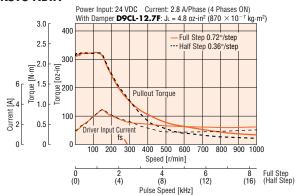


Note:


The pulse input circuit responds up to approximately 100 kHz with a pulse duty of 50%.

CSK569-NBTA

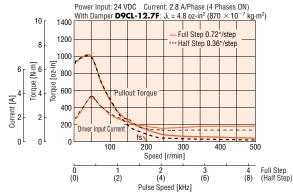
Standard Type


Specifications

Model	Single Shaft	CSK596-NATA	CSK599-NATA	CSK5913-NATA			
Model	Double Shaft	CSK596-NBTA	CSK599-NBTA	CSK5913-NBTA			
Maximum Holding Torque	oz-in (N⋅m)	290 (2.1)	580 (4.1)	890 (6.3)			
Rotor Inertia J	oz-in ² (kg·m ²)	7.7 (1400×10 ⁻⁷)	14.8 (2700×10 ⁻⁷)	22 (4000×10 ⁻⁷)			
Rated Current	A/phase	2.8					
Basic Step Angle		0.72°					
Power Source		24 VDC±10% 4 A					
Excitation Mode		 Full Step (4 phase excitation): 0.72°/step Half Step (4-5 phase excitation): 0.36°/step 					
Weight	Motor lb. (kg)	3.7 (1.7)	6.2 (2.8)	8.4 (3.8)			
weight	Driver lb. (kg)	0.55 (0.25)					
Dimension No.	Motor		3				
	Driver		7				


How to read specifications table→Page C-9

Speed — Torque Characteristics How to Read Speed-Torque Characteristics → Page C-10


CSK596-NBTA

CSK599-NBTA

CSK5913-NBTA

Note[.]

The pulse input circuit responds up to approximately 100 kHz with a pulse duty of 50%.

CE

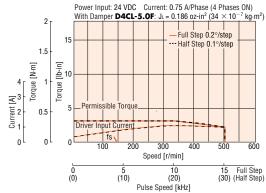
TH Geared Type Specifications

Motor Frame Size: 🗌 1.65 in. (🗌 42 mm)

°**87**""(E

Model	Single Shaft	CSK543AA-TG3.6	CSK543AA-TG7.2	CSK543AA-TG10	CSK543AA-TG20	CSK543AA-TG30
Model	Double Shaft	CSK543BA-TG3.6	CSK543BA-TG7.2	CSK543BA-TG10	CSK543BA-TG20	CSK543BA-TG30
Maximum Holding Torque	lb-in (N⋅m)	3 (0.35)	6.1 (0.7)	8.8 (1)	13.2 (1.5)	13.2 (1.5)
Rotor Inertia J	oz-in² (kg·m²)			0.191 (35×10 ⁻⁷)		
Rated Current	A/phase			0.75		
Basic Step Angle		0.2°	0.1°	0.072°	0.036°	0.024°
Gear Ratio		3.6:1	7.2:1	10:1	20:1	30:1
Permissible Torque	lb-in (N⋅m)	3 (0.35)	6.1 (0.7)	8.8 (1)	13.2 (1.5)	13.2 (1.5)
Backlash	Arc minute (degrees)	45 (0.7°)	25 (0.417°)	25 (0.417°)	15 (0.25°)	15 (0.25°)
Permissible Speed Range (Gear Ou	Itput Shaft Speed) r/min	0~500	0~250	0~180	0~90	0~60
Power Source				24 VDC±10% 1.3 A		
Evoltation Made	Full Step	0.2°/step	0.1°/step	0.072°/step	0.036°/step	0.024°/step
Excitation Mode	Half Step	0.1°/step	0.05°/step	0.036°/step	0.018°/step	0.012°/step
Mainht	Motor lb. (kg)			0.73 (0.33)		
Weight	Driver lb. (kg)			0.31 (0.14)		
Dimension No.	Motor			4		
Dimension No.	Driver			6		

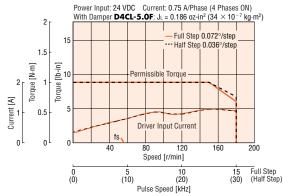
How to read specifications table $\rightarrow \mbox{Page C-9}$

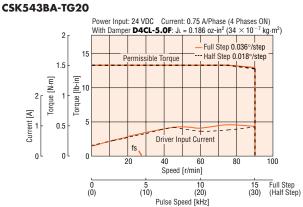

Note:

• Direction of rotation of the motor and that of the gear output shaft are the same for models with gear ratios of 3.6:1, 7.2:1 and 10:1.

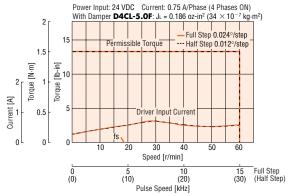
It is opposite for 20:1 and 30:1 gear ratios.

Speed — Torque Characteristics How to Read Speed-Torque Characteristics → Page C-10


CSK543BA-TG3.6



CSK543BA-TG7.2



CSK543BA-TG10

CSK543BA-TG30

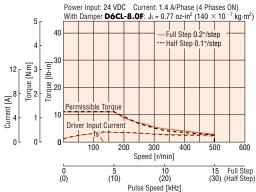
Note:

The pulse input circuit responds up to approximately 100 kHz with a pulse duty of 50%.

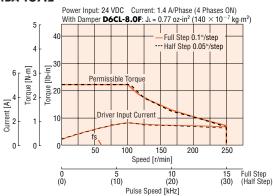
TH Geared Type Specifications

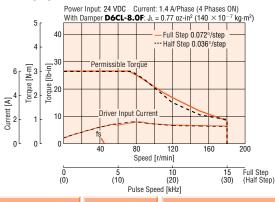
Motor Frame Size: 2.36 in. (260 mm)

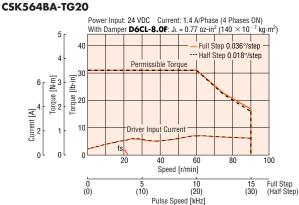
Model	Single Shaft	CSK564AA-TG3.6	CSK564AA-TG7.2	CSK564AA-TG10	CSK564AA-TG20	CSK564AA-TG30	
Model	Double Shaft	CSK564BA-TG3.6	CSK564BA-TG7.2	CSK564BA-TG10	CSK564BA-TG20	CSK564BA-TG30	
Maximum Holding Torque	lb-in (N⋅m)	11 (1.25)	22 (2.5)	26 (3)	30 (3.5)	35 (4)	
Rotor Inertia J	oz-in² (kg·m²)			0.96 (175×10 ⁻⁷)			
Rated Current	A/phase			1.4			
Basic Step Angle		0.2°	0.1°	0.072°	0.036°	0.024°	
Gear Ratio		3.6:1	7.2:1	10:1	20:1	30:1	
Permissible Torque	lb-in (N·m)	11 (1.25)	22 (2.5)	26 (3)	30 (3.5)	35 (4)	
Backlash	Arc minute (degrees)	35 (0.584°)	15 (0.25°)	15 (0.25°)	10 (0.167°)	10 (0.167°)	
Permissible Speed Range (Gear Out	put Shaft Speed) r/min	0~500	0~250	0~180	0~90	0~60	
Power Source				24 VDC±10% 2.1 A			
Excitation Mode	Full Step	0.2°/step	0.1°/step	0.072°/step	0.036°/step	0.024°/step	
Excitation would	Half Step	0.1°/step	0.05°/step	0.036°/step	0.018°/step	0.012°/step	
Waight	Motor lb. (kg)	2.1 (0.95)					
Weight	Driver lb. (kg)	0.31 (0.14)					
Dimension No.	Motor			5			
	Driver			6			


How to read specifications table→Page C-9

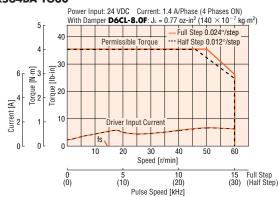
Note:


• Direction of rotation of the motor and that of the gear output shaft are the same for models with gear ratios of 3.6:1, 7.2:1 and 10:1. It is opposite for 20:1 and 30:1 gear ratios


CSK564BA-TG3.6



CSK564BA-TG7.2



CSK564BA-TG10

CSK564BA-TG30

Note:

The pulse input circuit responds up to approximately 100 kHz with a pulse duty of 50%.

Introduction

AS

ASC

RR

CFKI

PMC

UMK

CSK

PK/PV

UI2120G EMP402 SG8030J

SMK

Accessories

Motors

Closed Loop *Closed* Loop *Closed* Loop *Closed* Loop *Closed* AS PLUS

5-Phase Microstep AC Input DC Input

Full/Halt

2-Phase Full/Half AC Input DC Input

without Encoder

Encode Ŗ

2-Phase Stepping Motors without with

Driver with Indexer

Controllers

Common Specifications

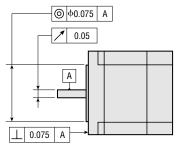
	Input Signal Circuit	Photocoupler input, Input resistance 220 Ω , Input current 10~20 mA maximum Signal voltage Photocoupler ON: +4.5~+5 V, Photocoupler OFF: 0~+1 V (voltage between terminals)
-	 Pulse Signal (CW Pulse Signal)* 	Step command pulse signal (CW step command pulse signal at 2-pulse input mode) Pulse width: 5 μs minimum, Pulse rise/fall: 2 μs maximum, pulse duty: Max. 50% Motor moves when the photocoupler state changes from ON to OFF. Maximum input frequency: 100 kHz (when a pulse duty is 50%) Negative logic pulse input.
Input Signals	 Rotation Direction Signal (CCW Pulse Signal)* 	Rotation direction signal Photocoupler ON: CW, Photocoupler OFF: CCW CCW step command signal at 2-pulse input mode. Pulse width: 5 μs minimum, Pulse rise/fall: 2 μs maximum. pulse duty: Max. 50% Motor moves when the photocoupler state changes from ON to OFF. Maximum input frequency: 100 kHz (when a pulse duty is 50%) Negative logic pulse input.
	• Step Angle Signal	Full Step (0.72°) at "photocoupler OFF" Half Step (0.36°) at "photocoupler ON"
	• All Windings Off Signal	When in the "photocoupler ON" state, the current to the motor is cut off and the motor shaft can be rotated manually. When in the "photocoupler OFF" state, the current level set by the RUN switch is supplied to the motor.
	Automatic Current Cutback Release Signal	When in the "photocoupler ON" state, the "Automatic Current Cutback" function at motor standstill is disabled. When in the "photocoupler OFF" state, the "Automatic Current Cutback" function at motor standstill is activated. (Approximately 100 ms after motor stops).
als	Output Signal Circuit	Photocoupler, Open-Collector Output External use condition: 24 VDC maximum, 10 mA maximum
Output Signals	• Excitation Timing Signal	The signal is output every time the excitation sequence returns to the initial stage "0". (Photocoupler: ON) Full step: signal output every 10 pulses, Half step: signal output every 20 pulses
Out	• Overheat Signal *	The signal is output when the internal temperature of the driver rises above approximately 194°F (90°C). (Photocoupler: ON, Automatic return) The motor current is shut off automatically if the automatic current off function is ON.
F	unctions	Automatic current cutback, Automatic current off,* Pulse input mode switch.*
C	river Cooling Method	Natural ventilation

* Only for CSD5828N-T (CSK59 Package)

General Specifications

Specific	ations	Motor	Driver	
Insulation Class	Class B [266°F (130°C)] [Recognized as Class A [221°F (105°C)] by UL and CSA standards.]		—	
Insulation Resistance	ion Resistance $100 \ M\Omega$ minimum under normal temperature and humidity, where w_{0} by a 500 VDC megger between the motor coils and the motor		—	
Dielectric Strength		Sufficient to withstand 1.5 kV (1 kV for CSK54 [hype), 60 Hz applied between the motor coils and casing for one minute, under normal temperature and humidity.	—	
Operating Environment	Ambient Temperature	$14^{\circ}F$ ~ $122^{\circ}F$ ($-10^{\circ}C$ ~ $+50^{\circ}C$) (nonfreezing)	32°F∼104°F (0°C∼+40°C) (nonfreezing)	
Operating Environment	Ambient Humidity	85% or less (non-condensing)	
	Atmosphere	No corrosive gases, dust, water or oil.		
Temperature Rise		Temperature rise of the coil measured by the Change Resistance Method is 144°F (80°C) or less. (at standstill, five phases energized)	—	
Static Angle Error *1		± 3 arc minute ($\pm 0.05^{\circ}$)		
Shaft Runout		0.002 inch (0.05 mm) T.I.R at top of output shaft *4		
Radial Play *2		0.001 inch (0.025 mm) max. of 1.12 lb. (5 N)		
Axial Play *3		0.003 inch (0.075 mm) max. of 2.2 lb. (10 N)		
Concentricity		0.003 inch (0.075 mm) T.I.R *4		
Perpendicularity		0.003 inch (0.075 mm) T.I.R *4		

***1** This value is for full step under no load. (The value changes with size of the load.)


*2 Radial Play: Refers to the displacement in shaft position in the radial direction, when a 1.12 lb. (5 N) load is applied in the vertical direction to the tip of the motor's shaft.

*3 Axial Play: Refers to the displacement in shaft position in the axial direction, when a 2.2 lb. (10 N) load is applied to the motor's shaft in the axial direction.

*4 T.I.R. (Total Indicator Reading): Refers to the total dial gauge reading when the measured section is rotated one revolution centered on a reference axis.

Note:

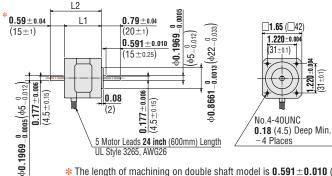
• Do not measure insulation resistance or perform the dielectric strength test while the motor and driver are connected.

Permissible Overhung Load and Permissible Thrust Load

Unit = Upper values: Ib./Lower values: N

5

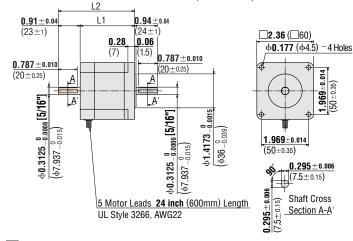
S


Model		Overhung Load Distance from Shaft End [inch (mm)]					
	0 (0)	0.2 (5)	0.39 (10)	0.59 (15)	0.79 (20)		
CSK54	4.5	5.6	7.6	11.7			
C3K34_	20	25	34	52		The permissible thrust	
CSK56	14.1	16.8	21	29	42	load [lb. (N)] shall be no	
CSKJO	63	75	95	130	190	greater than the motor	
CSK59	58	65	76	87	108	mass.	
CSK59	260	290	340	390	480		
CSK543-TG	2.2	3.1	4.5	6.7		3.3	
C3K343-1G	10	14	20	30		15	
CSK564-TG	15.7	18	22	27	33	9	
C3K304-1G	70	80	100	120	150	40	

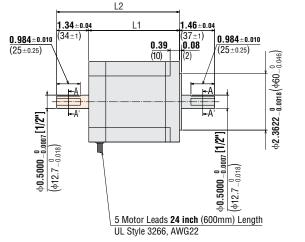
Dimensions Scale 1/4, Unit = inch (mm)

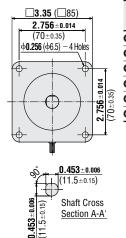
Motor

Standard Type


1 Motor Frame Size: □1.65 in. (□42 mm)

L1 L2 Weight Model Motor Model DXF inch (mm) inch (mm) lb. (kg) CSK543-NATA PK543NAWA 1.3 (33) 0.46 (0.21) B068U CSK543-NBTA PK543NBWA 1.89 (48) CSK544-NATA PK544NAWA 1.54 (39) 0.59 (0.27) B069U CSK544-NBTA PK544NBWA 2.13 (54) CSK545-NATA PK545NAWA 1.85 (47) 0.77 (0.35) B070U CSK545-NBTA PK545NBWA 2.44 (62)


* The length of machining on double shaft model is 0.591±0.010 (15±0.25).

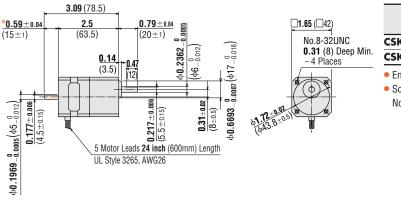

2 Motor Frame Size: \Box 2.36 in. (\Box 60 mm)

Model	Motor Model	L1 inch (mm)	L2 inch (mm)	Weight Ib. (kg)	DXF
CSK564-NATA	PK564NAWA	1 00 (40 5)		1.2 (0.6)	B071U
CSK564-NBTA	PK564NBWA	1.83 (46.5)	2.74 (69.5)	1.3 (0.6)	60710
CSK566-NATA	PK566NAWA	2.26 (57.5)		1.8 (0.8)	B072U
CSK566-NBTA	PK566NBWA	2.20 (37.3)	3.17 (80.5)	1.0 (0.0)	60720
CSK569-NATA	PK569NAWA	0 40 (07)	_	0.0 (1.0)	B073U
CSK569-NBTA	PK569NBWA	3.43 (87)	4.33 (110)	2.9 (1.3)	DU/30

3 Motor Frame Size: 3.35 in. (85 mm)

	Model	Motor Model	L1 inch (mm)	L2 inch (mm)	Weight Ib. (kg)	DXF
	CSK596-NATA	PK596-NAA	2.6 (66)	—	3.7 (1.7)	B155U
	CSK596-NBTA	PK596-NBA	2.0 (00)	3.94 (100)	3.7 (1.7)	
	CSK599-NATA	PK599-NAA	2 70 (00)	—	6.2 (2.8)	B156U
	CSK599-NBTA	PK599-NBA	3.78 (96)	5.12 (130)	0.2 (2.0)	B1300
loo-o-	CSK5913-NATA	PK5913-NAA	4.96 (126)	—	8.4 (3.8)	B157U
5	CSK5913-NBTA	PK5913-NBA	4.90 (120)	6.3 (160)	0.4 (3.0)	61370

 These dimensions are for double shaft models. For single shaft models, ignore the shaded areas.

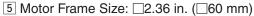

ASC

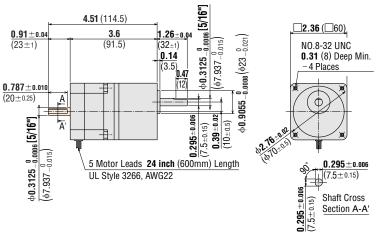
RR

SS

♦ TH Geared Type

4 Motor Frame Size: □1.65 in. (□42 mm)

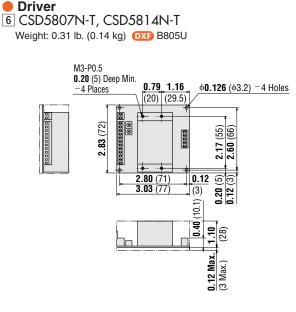

	Model	Motor Model	Weight Ib. (kg)	DXF
on Min	CSK543AA-TG	PK543NAWA-T	0 70 (0 00)	07411
	CSK543BA-TG	PK543NBWA-T	0.73 (0.33)	B074U


• Enter the gear ratio in the box (\Box) within the model number.

Screws (included)

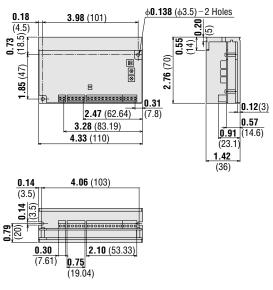
No.8-32 UNC, 0.375 inch (9.52 mm) length, 4 pieces

* The length of machining on double shaft model is 0.591±0.010 (15±0.25).

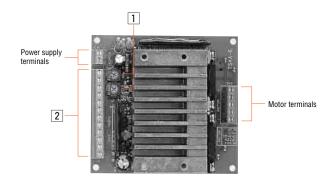

Model	Motor Model	Weight Ib. (kg)	DXF
CSK564AA-TG	PK564NAWA-T	0.1 (0.05)	DOZELI
CSK564BA-TG	PK564NBWA-T	2.1 (0.95)	B075U

• Enter the gear ratio in the box (\Box) within the model number.

Screws (included)


No.8-32 UNC, 0.75 inch (19.05 mm) length, 4 pieces

• These dimensions are for double shaft models. For single shaft models, ignore the shaded areas.



7 CSD5828N-T

Weight: 0.55 lb. (0.25 kg) DXF B806U

Connection and Operation Standard Type: CSK54, CSK56 TH Geared Type: CSK543, CSK564

1 Current Adjustment Potentiometers

	-	
Indicator	Switch Name	Function
RUN	Motor run current	Adjusts the motor
NUN	potentiometer	running current
STOP	Motor stop current	Adjusts the motor
510P	potentiometer	current at standstill

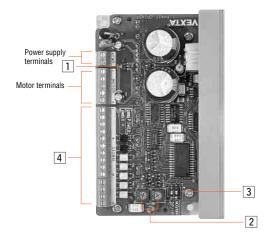
2 Input/Output Signal

P						
Co	onnector	Input/Output	Terminal No.	Signal Name		
			1	Dulas O'mal		
			2	Pulse Signal		
			3	Detetion Direction Ginnel		
			4	Rotation Direction Signal		
		Input signals	5	All Windings Off Signal		
	CNO		6	All Windings on Signal		
	CN2		7	Step Angle Select Signal		
			8	Step Aligie Select Signal		
			9	Current Cutback Release Signal		
			10	Guilent Guiback Release Signal		
		Output signals	11	Excitation Timing Signal		
		Output signais	12	Excitation mining Signal		

Standard Type: CSK59

Introduction

AS


ASC

RK

Closed Loop *Q*(STEP AC Input DC Input AS PLUS

> AC Input 5-Phase

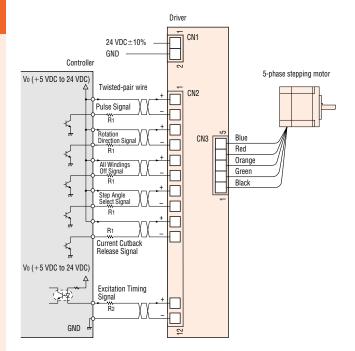
DC Inpu CFKI

1 Signal Monitor Display

<u> </u>		
Indicator	Color	Function
POWER	Green	Power input display
0.H.	Red	Overheat output display

2 Current Adjustment Potentiometers

Indicator	Switch Name	Function
RUN		Adjusts the motor running current
STOP	Motor stop current potentiometer	Adjusts the motor current at standstill


3 Function Select Switches

Indicator	Switch Name	Function
2P/1P	Pulse input mode switch	Switches between 1-pulse input and 2-pulse input
A.C.O/OFF	Automatic current off function switch	When the heat sink temperature of the driver rises above 194°F (90°C), this function automatically switches the motor current off. Function can be set and released with this switch.

4 Input/Output Signal

Connector	Input/Output	Terminal No.	Signal Name	
		1	Dulas Cisnel (CM/ Dulas Cisnel)	
		2	Pulse Signal (CW Pulse Signal)	
		3	Detetion Direction Cinnel (COW Dules Cinnel)	
		4	Rotation Direction Signal (CCW Pulse Signal)	
	Input signals	5	All Windings Off Signal	
	input signals	6	Air Windings On Signal	
SIGNAL		7	Step Angle Select Signal	
		8	Step Angle Select Signal	
		9	Current Cutback Release Signal	
		10	Sufferit Sufface Release Signal	
		11	Excitation Timing Signal	
	Output signals	12	Excitation mining Signal	
	Output signals	13	Overheat Signal	
		14	Overheat Signal	

Power Supply

Use an input power voltage of 24 VDC \pm 10%. Use a power supply that can supply sufficient input current.

Notes:

- Keep the voltage Vo between 5 VDC and 24 VDC. When Vo is equal to 5 VDC, the external resistance R₁ is not necessary. When Vo is above 5 VDC, connect R₁ to keep the current between 10 mA and 20 mA, and connect R₂ to keep the current below 10 mA.
- Use twisted-pair wire of AWG 24 or thicker and 6.6 feet (2 m) or less in length for the signal line.
- Note that as the length of the pulse signal line increases, the maximum transmission frequency decrease. (→Technical Reference Page F-36)
- Suitable wire size for the CN1, CN2 and CN3 connector is between AWG 22 and AWG 26. Use AWG 20 or thicker for motor lines (when extended) and power supply line.
- Signal lines should be kept at least 3.9 inches (10 cm) away from power lines (power supply lines and motor lines). Do not bind the signal line and power line together.
- Use spot grounding to ground the driver and external controller.
- If noise generated by the motor lead wire causes a problem, try shielding the motor lead wires with conductive tape or wire mesh.
- Incorrect connection of DC power input will lead to driver damage. Make sure that the polarity is correct before turning the power on.

Description of Input/Output Signals Pulse Input Signal

"Pulse" signal is input to the PULSE-terminal. When the photocoupler state changes from "ON" to "OFF", the motor rotates one step. The direction of rotation is determined by the rotation direction signal.

Rotation Direction Input Signal

The "Rotation Direction" signal is input to the DIRECTION-terminal. A "photocoupler ON" signal input commands a clockwise direction rotation. A "photocoupler OFF" signal input commands a counterclockwise direction rotation.

All Windings Off Input Signal

When the "All Windings Off" (A.W. OFF) signal is in the "photocoupler ON" state, the current to the motor is cut off and motor torque is reduced to zero. The motor output shaft can then be rotated freely by hand. This signal is used when moving the motor by external force or to the manual home position.

Step Angle Select Input Signal

When the "Step Angle Select" (FULL/HALF) signal is in the "photocoupler ON" state, half step mode has been selected; when the FULL/HALF signal is in the "photocoupler OFF" state, full step mode has been selected.

Current Cutback Release Input Signal

When the "Current Cutback Release" (C.D.INH) signal is in the "photocoupler ON" state, the "Automatic Current Cutback" function is not activated.

Excitation Timing Output Signal

The Excitation Timing signal is output once each time the excitation sequence returns to step "0" in synchronization with input pulses.

The excitation sequence is designed to complete one cycle as the motor shaft rotates 7.2°. A signal is output every 10 pulses in full step mode and every 20 pulses in half step mode.(When the "Excitation Timing" signal is output, the transistor turns ON.)

Introduction

AS

ASC

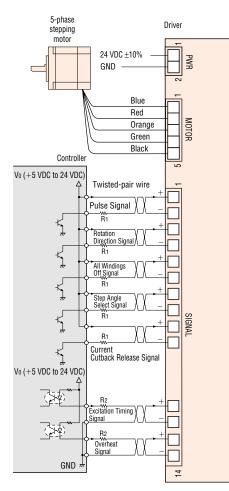
RR

СЕКП

PMC

UMK

CSK


Ŗ

SG8030J

SMK

Accessorie:

♦ CSK59□

Power Supply

Use an input power voltage of 24 VDC \pm 10%. Use a power supply that can supply sufficient input current.

Notes:

- Keep the voltage Vo between 5 VDC and 24 VDC. When Vo is equal to 5 VDC. the external resistance R1 is not necessary. When Vo is above 5 VDC, connect R1 to keep the current between 10 mA and 20 mA, and connect R2 to keep the current below 10 mA.
- Use twisted-pair wire of AWG 24 or thicker and 6.6 feet (2 m) or less in length for the signal line.
- · Note that as the length of the pulse signal line increases, the maximum transmission frequency decrease. (→Technical Reference Page F-36)
- · Suitable wire size for the "PWR", "MOTOR" and "SIGNAL" connector is between AWG 20 and AWG 26. Use AWG 20 or thicker for motor lines (when extended) and power supply line.
- · Signal Lines should be kept at least 3.9 inches (10 cm) away from power lines (power supply lines and motor lines). Do not bind the signal line and power line together.
- Use spot grounding to ground the driver and external controller.
- · If noise generated by the motor lead wire causes a problem, try shielding the motor lead wires with conductive tape or wire mesh.
- · Incorrect connection of DC power input will lead to driver damage. Make sure that the polarity is correct before turning the power on.

Description of Input/Output Signals Pulse (CW) and Rotation Direction (CCW) Input Signal

1-Pulse Input Mode Pulse Signal

"Pulse" signal is input to the P./CW-terminal. When the photocoupler state changes from "ON" to "OFF", the motor rotates one step. The direction of rotation is determined by the rotation direction signal.

Rotation Direction Signal

The "Rotation Direction" signal is input to

D./CCW-terminal. A "photocoupler ON" signal input commands a clockwise direction rotation. A "photocoupler OFF" signal input commands a counterclockwise direction rotation.

2-Pulse Input Mode

CW Pulse Signal

"Pulse" signal is input to the P./CW-terminal. When the photocoupler state changes from "ON" to "OFF", the motor rotates one step in the clockwise direction.

CCW Pulse Signal

"Pulse" signal is input to the D./CCW-terminal. When the photocoupler state changes from "ON" to "OFF", the motor rotates one step in the counterclockwise direction.

All Windings Off Input Signal

When the "All Windings Off" (A.W. OFF) signal is in the "photocoupler ON" state, the current to the motor is cut off and motor torque is reduced to zero. The motor output shaft can then be rotated freely by hand. This signal is used when moving the motor by external force or to the manual home position.

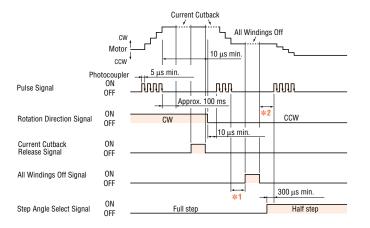
Step Angle Select Input Signal

When the "Step Angle Select" (FULL/HALF) signal is in the "photocoupler ON" state, half step mode has been selected; when the FULL/HALF signal is in the "photocoupler OFF" state, full step mode has been selected.

Current Cutback Release Input Signal

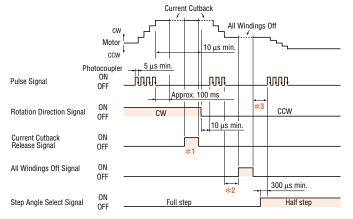
When the "Current Cutback Release" (C.D.INH) signal is in the "photocoupler ON" state, the "Automatic Current Cutback" function is not activated.

Excitation Timing Output Signal


The signal is output once each time the excitation sequence returns to step "0" in synchronization with input pulses.

The excitation sequence is designed to complete one cycle as the motor shaft rotates 7.2°. A signal is output every 10 pulses in full step mode and every 20 pulses in half step mode. (When the "Excitation Timing" signal is output, the transistor turns ON.)

Overheat Output Signal


The Overheat signal is output to protect the driver from heat damage if the internal temperature of the driver rises above 194°F (90°C). At the same time this signal is output, the O.H.LED on the circuit board is lit up. The O.HEAT signal is automatically turned off when the temperature of the driver heat sink falls to below 194°F (90°C). (The O.HEAT signal returns to the "photocoupler OFF" state. and O.H.LED turns off.)



♦CSK59□

• 1-pulse input mode

2-pulse input mode

Note:

 $10\,\mu s$ or more is the standard interval time for switching from CW to CCW. Note that the interval time varies greatly depending on the motor and load inertia.

- *1 Wait a period of time to allow the motor oscillations to end before inputting the "All Windings Off" signal. This time varies with the load inertia, the load torque and the starting pulse rate. The signal input must be stopped before the motor stops.
- *2 Never input a step pulse signal immediately after switching the "All Windings Off" signal to "photocoupler OFF" state or the motor may lose synchronism. In general, a minimum interval of 300 μs is required.

The shaded area indicates when the photocoupler is ON.

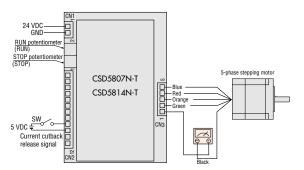
Note:

10 μs or more is the standard interval time for switching from CW to CCW. Note that the interval time varies greatly depending on the motor and load inertia.

- *1 When the signal is in the "photocoupler ON" state, the "Automatic Current Cutback" function is deactivated. Always set it in the "photocoupler OFF" state when the pulse signal is stopped.
- *2 Wait a period of time to allow the motor oscillations to end before inputting the "All Windings Off" signal. This time varies with the load inertia, the load torque and the starting pulse rate. The signal input must be stopped before the motor stops.
- *3 Never input a step pulse signal immediately after switching the "All Windings Off" signal to "photocoupler OFF" state or the motor may lose synchronism. In general, a minimum interval of 300 μs is required.
- *4 The motor will not operate properly if a pulse signal is input when either the CW or CCW input "photocoupler ON" state.

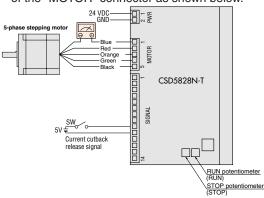
The shaded area indicates when the photocoupler is ON.

Adjusting the Output Current


The rated output current is set at the factory. When it is necessary to change the current setting, follow the procedures described below.

Connecting an Ammeter

CSK54, CSK56


CSK543 A-TG, CSK564 A-TG

Connect a DC ammeter between the motor and terminal (1) of CN3 connector as shown below.

CSK59

Connect a DC ammeter between the motor and terminal (1) of the "MOTOR" connector as shown below.

- •After connecting the DC ammeter to the motor, turn on the power. (The excitation status at this point is fixed.)
- When the power is turned on, the motor enters a 4 phase excitation state, and +directional positive current flows through the CSK54, CSK56-black, CSK59-blue motor lead wire. (Even if 4-5 phase excitation has been selected, the motor enters a 4 phase excitation state when the power is turned on. Adjust the current in this state.)
- The value measured by the ammeter represents the total current in two phases. The current for one phase is equivalent to half of the ammeter value. (When setting the current to 1.0 A/phase, adjust the current level until the ammeter reads 2.0 A.)

Notes:

- · Never input pulse signals.
- · Select "photocoupler OFF" for "All Windings Off" signal. (Select "photocoupler OFF" when the switch is open.)
- · When the RUN current is adjusted, the current at motor standstill also changes.

Adjusting the Motor Running Current

Set the "Current Cutback Release" signal to the "photocoupler ON" state (SW: ON) when adjusting the RUN current.

(1) Adjust the motor RUN current with the RUN potentiometer.

Adjusting range CSD5807N-T: 0.1 A/phase to 0.75 A/phase CSD5814N-T: 0.1 A/phase to 1.4 A/phase CSD5828N-T: 1.0 A/phase to 2.8 A/phase (2)The motor operating current is set for rated current (CSD5807N-T: 0.75 A/phase, CSD5814N-T: 1.4 A/phase, CSD5828N-T: 2.8 A/phase) at the time of shipping, but it can be readjusted using the RUN potentiometer. The operating current can be lowered to suppress temperature rise in the motor/driver, or lower running current in order to allow a margin for motor torque or to reduce vibration. Note:

. The motor RUN current should be less than the motor rated current.

Adjusting the Current at Motor Standstill

Set the "Current Cutback Release" signal to the "photocoupler OFF" state (SW: OFF) when adjusting the current while the motor is stopped.

(1) Adjust the current at motor standstill with the STOP potentiometer.

Adjusting range CSD5807N-T: 0.1 A/phase to 0.6 A/phase CSD5814N-T: 0.1 A/phase to 1.05 A/phase CSD5828N-T: 0.7 A/phase to 2.3 A/phase (2) At the time of shipping, the current at motor standstill is set for half the rated current. (CSD5807N-T: 0.375 A/phase, CSD5814N-T: 0.7 A/phase, CSD5828N-T: 1.4 A/phase). The STOP potentiometer can be used to readjust the current at motor standstill to the current value required to produce enough holding torque.

Holding torque	_	Maximum holding torque × [oz-in (N·m)]	Current at motor standstill [A]
[oz-in (N·m)]	-	Motor rated of	current [A]

Introduction

AS

AS PLUS

ASC

RK

csk

UMK

CSK

PK/PV

UI2120G

SG8030J

SMK

Accessorie:

Closed Loop *Q*_{STEP} AC Input DC Input

AC Input 5-Phase Microstep

DC Input CFKI

Full/Half PMC

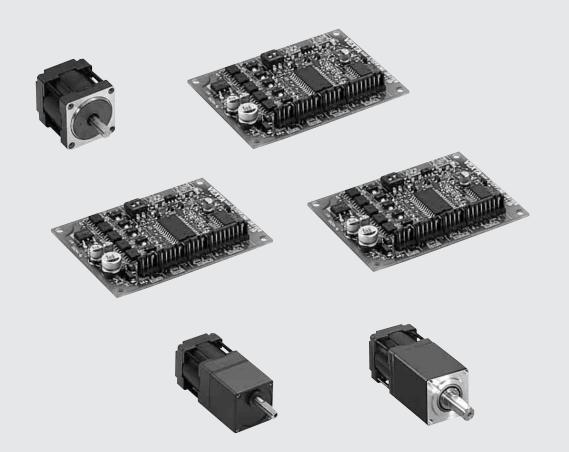
2-Phase Full/Half AC Input DC Input

without Encoder

Encode

with Ŗ

Driver with Indexe


Controllers

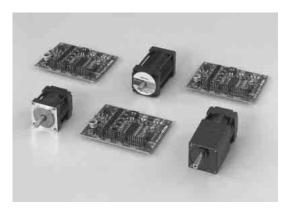
2-Phase Stepping Motors

List of Motor and Driver Combinations

Туре	Model	Motor Model	Driver Model
	CSK543-N□TA	PK543N□WA	
	CSK544-N□TA	PK544N□WA	CSD5807N-T
	CSK545-N□TA	PK545N□WA	
	CSK564-N□TA	PK564N⊡WA	
Standard	CSK566-N⊡TA	PK566NDWA	CSD5814N-T
	CSK569-N□TA	PK569NDWA	
	CSK596-N⊡TA	PK596-N□A	
	CSK599-N□TA	PK599-N□A	CSD5828N-T
	CSK5913-N□TA	PK5913-N□A	
	CSK543□A-TG3.6	PK543N WA-T3.6	
	CSK543_A-TG7.2	PK543N□WA-T7.2	
	CSK543□A-TG10	PK543N□WA-T10	CSD5807N-T
	CSK543□A-TG20	PK543N□WA-T20	
TH Geared	CSK543□A-TG30	PK543N WA-T30	
	CSK564_A-TG3.6	PK564N□WA-T3.6	
	CSK564_A-TG7.2	PK564N□WA-T7.2	
	CSK564_A-TG10	PK564N□WA-T10	CSD5814N-T
	CSK564□A-TG20	PK564N□WA-T20	
	CSK564□A-TG30	PK564N_WA-T30	

• Enter ${\bf A}$ (single shaft) or ${\bf B}$ (double shaft) in the box () within the model numbers.

5-Phase Stepping Motor and Driver Package **PMC Series**


Additional Information

Technical ReferenceF-1	
General InformationG-1	

Stepping Motors

5-Phase Stepping Motor and Driver Package PMC Series

The **PMC** Series combines a high torque miniature 5phase stepping motor with a board-level, credit card sized driver. Zero or low backlash gearheads are available.

Features

Miniature Motors & Gearmotors

Lightweight, compact motors are 1.10 in. sq. (28 mm sq.), and 0.22 lb. (0.1 kg: **PMC33**3) or 0.38 lb. (0.17 kg: **PMC35**3) in weight.

Gearmotors also feature a mounting frame of only 1.10 in. sq. (28 mm sq.) Zero backlash harmonic gearmotors (**HG**) are available in gear ratios of 50:1 and 100:1. The harmonic gearmotors provide high output torque and high resolution. Low backlash spur gearmotors (**MG**) are also available in gear ratios of 3.6:1, 7.2:1, 10:1, 20:1, and 30:1. The low gear ratios mean that speed can be reduced without slowing the motor too much, thus enabling more precise resolution and more smooth rotation at a low speed.

High Output

Design advancements allow for high torque in a small package. In combination with the 0.35 A/phase output driver, the **PMC**'s high torque capability extends well into the high speed range.

Superior Features

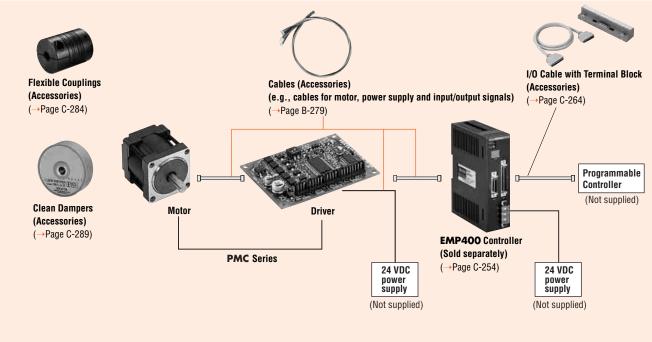
Features include enabling/disabling of the "Automatic Current Cutback" function via signal input and the "Excitation Timing" output, which is useful in setting the mechanical origin of your system.

Connectors

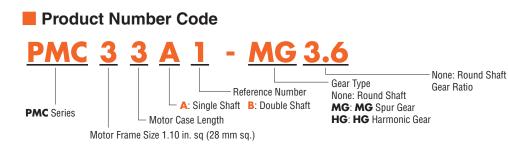
Independent connectors are supplied for the driver input/output signals and the motor output line.

Highly Reliable Photocoupler Input

Signal input/output sections use photocoupler inputs that provide protection from external noise. Requirement for a single 24 or 36 VDC power supply simplifies power supply design and reduces wiring work.


Selectable: Full Step/Half Step

Half step drive is selectable through a signal for driving at higher resolution with lower vibration.


1-Pulse/2-Pulse Input Mode

A switch on the driver selects one-pulse or two-pulse input mode.

System Configuration

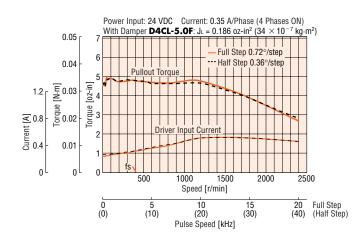
An example of a single-axis system configuration with an **EPM400** series controller.

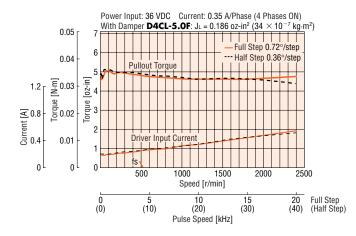
Product Line

Туре	Power Supply Voltage	Maximum Holding Torque	
Standard Type		4.6~8.5 oz-in (0.033~0.06 N⋅m)	
MG Geared Type	24/36 VDC	11.3~72 oz-in (0.08~0.51 N⋅m)	
HG Geared Type		210~280 oz-in (1.5~2 N⋅m)	

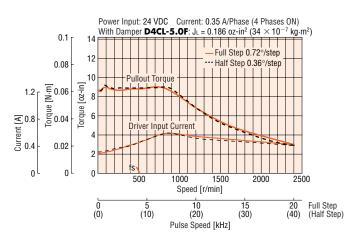
Introduction

AS

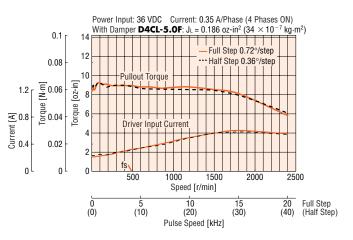

Standard Type


Specifications

Model	Single Shaft	PMC33A3	PMC35A3			
Model	Double Shaft	PMC33B3	PMC35B3			
Maximum Holding Torque	oz-in (N·m)	4.6 (0.033)	8.5 (0.06)			
Rotor Inertia J	oz-in² (kg⋅m²)	0.049 (9×10 ⁻⁷)	0.098 (18×10 ⁻⁷)			
Rated Current	A/phase	0.35				
Basic Step Angle		0.72°				
Power Source		24 VDC±10% 0.7 A or 36 VDC±10% 0.7 A				
Excitation Mode			e excitation): 0.72°/step ase excitation): 0.36°/step			
Weight	Motor lb. (kg)	0.22 (0.1) 0.37 (0.17)				
Weight	Driver lb. (kg)	0.055 (0.025)				
Dimension No.	Motor		1			
	Driver		4			


How to Read Specifications Table→Page C-9

■ Speed — Torque Characteristics How to Read Speed-Torque Characteristics→Page C-10 PMC33B3 24 VDC PMC33B3 36 VDC



PMC35B3 24 VDC

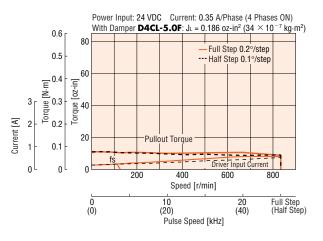
PMC35B3 36 VDC

Note:

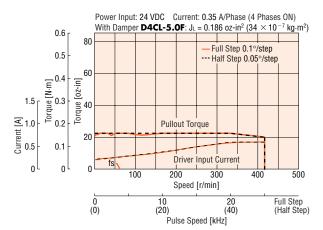
The pulse input circuit responds up to approximately 100kHz with a pulse duty of 50%.

MG Geared Type

Specifications

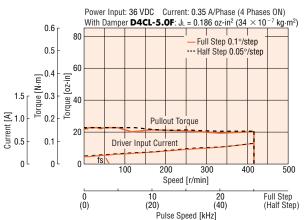

Model	Single Shaft	PMC33A1-MG3.6	PMC33A1-MG7.2	PMC33A1-MG10	PMC33A1-MG20	PMC33A1-MG30	
Wodel	Double Shaft	PMC33B1-MG3.6	PMC33B1-MG7.2	PMC33B1-MG10	PMC33B1-MG20	PMC33B1-MG30	
Maximum Holding Torque	oz-in (N∙m)	11.3 (0.08)	22 (0.16)	29 (0.21)	48 (0.34)	72 (0.51)	
Rotor Inertia J	oz-in ² (kg·m ²)			0.049 (9×10 ⁻⁷)			
Rated Current	A/phase			0.35			
Basic Step Angle		0.2°	0.1°	0.072°	0.036°	0.024°	
Gear Ratio		3.6:1	7.2:1	10:1	20:1	30:1	
Permissible Torque	oz-in (N·m)	11.3 (0.08)	22 (0.16)	29 (0.21)	48 (0.34)	72 (0.51)	
Permissible Speed Range (Gear Output Shaft Speed)	r/min	0~833	0~416	0~300	0~150	0~100	
Power Source			24 VDC±	10% 0.7 A or 36 VDC±	10% 0.7 A		
Excitation Mode	Full Step	0.2°/step	0.1°/step	0.072°/step	0.036°/step	0.024°/step	
Excitation would	Half Step	0.1°/step	0.05°/step	0.036°/step	0.018°/step	0.012°/step	
Waiaht	Motor lb. (kg)	0.35 (0.16)					
Weight	Driver lb. (kg)	0.055 (0.025)					
Dimension No.	Motor			2			
Dimension No.	Driver			4			

How to Read Specifications Table→Page C-9 Note:


 Direction of rotation of the motor and that of the gear output shaft are the same for models with gear ratios of 3.6:1, 7.2:1, 20:1 and 30:1. It is opposite for 10:1 gear ratio.

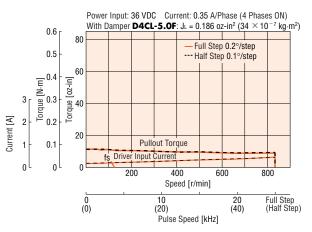
Speed — Torque Characteristics How to Read Speed-Torque Characteristics → Page C-10

PMC33B1-MG3.6 24 VDC



PMC33B1-MG7.2 24 VDC

36 VDC


PMC33B1-MG7.2

Note:

The pulse input circuit responds up to approximately 100kHz with a pulse duty of 50%.

PMC33B1-MG3.6 36 VDC

Introduction

AS

ASC

RK

CFKI

CSK

UMK

CSK

PK/PV

Ŗ

UI2120G

EMP401 EMP402 SG8030J

SMK

Accessories

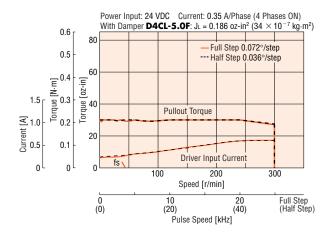
Motors

Closed Loop *Closed* Loop *Closed* Loop *Closed* Loop *Closed* AS PLUS

5-Phase Microstep AC Input DC Input

Full/Halt

2-Phase Full/Half AC Input DC Input

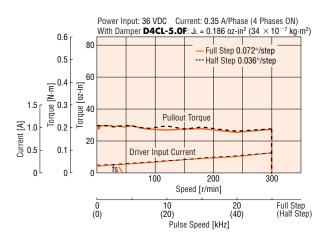

without Encoder

Encoder

2-Phase Stepping Motors without with

Driver with Indexer

Controllers


Power Input: 24 VDC Current: 0.35 A/Phase (4 Phases ON)

Pullout Torque

With Damper **D4CL-5.0F**: $J_L = 0.186 \text{ oz-in}^2 (34 \times 10^{-7} \text{ kg} \cdot \text{m}^2)$

-Full Step 0.036°/step

--- Half Step 0.018°/step

PMC33B1-MG20 24 VDC

0.6

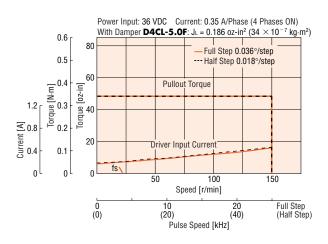
0.5

- 0.4

Ē ż

1.2

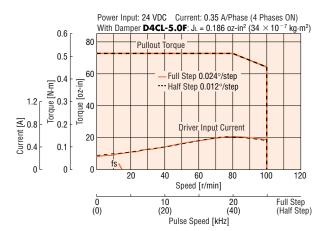
80

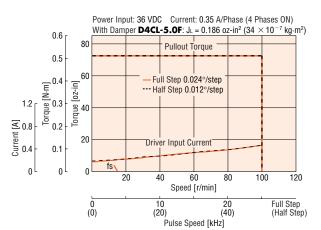

60

[oz-in]

월 40

PMC33B1-MG20





24 VDC

PMC33B1-MG30 36 VDC

Note:

The pulse input circuit responds up to approximately 100kHz with a pulse duty of 50%.

Introduction

AS

ASC

RK

CFKI

CSK

UMK

CSK

PK/PV

Ŗ

UI2120G

AC Input DC Input **AS PLUS**

> AC Input 5-Phase Microstep

DC Input

Full/Halt

2-Phase Full/Half AC Input DC Input

without Encoder

Encoder

2-Phase Stepping Motors without with

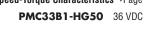
Driver with Indexer

Controllers

Motors

HG Geared Type Motor Frame Size: 1.10 in. (28 mm)

Specifications


Model	Single Shaft	PMC33A1-HG50	PMC33A1-HG100		
Model	Double Shaft	PMC33B1-HG50	PMC33B1-HG100		
Maximum Holding Torque oz-in (N·m)		210 (1.5)	280 (2)		
Rotor Inertia J	oz-in² (kg⋅m²)	0.066 (12×10 ⁻⁷)			
Rated Current	A/phase	().35		
Basic Step Angle		0.0144°	0.0072°		
Gear Ratio		50:1	100:1		
Permissible Torque oz-in (N·m) Maximum Torque * oz-in (N·m) Lost Motion (at Load Torque) Arc min		210 (1.5)	280 (2)		
		280 (2)	390 (2.8)		
		Max. 3.0 (±8.5 oz-in)	Max. 3.0 (±11.3 oz-in)		
Permissible Speed Range (Gear Output SI	haft Speed) r/min	0~70 0~35			
Power Source		24 VDC±10 % 0.7 A or 36 VDC±10 % 0.7 A			
Excitation Mode	Full Step	0.0144°step	0.0072°step		
Excitation Mode	Half Step	0.0072°step	0.0036°step		
Weight	Motor lb. (kg)	0.46	6 (0.21)		
weight	Driver lb. (kg)	0.055 (0.025)			
Dimension No.	Motor		3		
	Driver		4		

How to Read Specifications Table→Page C-9

* The value of maximum torque is for the gear. Refer to the Speed-Torque Characteristics for the output torque of the geared motor. Note:

• The gear shaft rotates in the opposite direction from the motor shaft.

Speed — Torque Characteristics How to Read Speed-Torque Characteristics → Page C-10 PMC33B1-HG50 24 VDC

3.5

3

2.5

2

1.5

0.5

0

[orque [N·m]

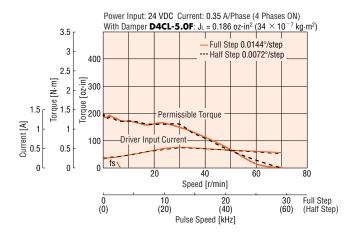
1.5

0.5

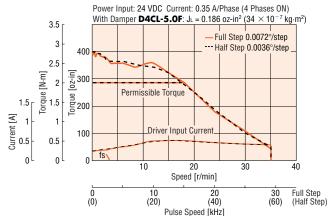
0

Current [A]

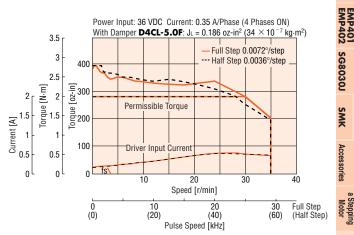
400


^{i-zo} 300

anbuou


100

0


0 (0)

PMC33B1-HG100 24 VDC

PMC33B1-HG100 36 VDC

Power Input: 36 VDC Current: 0.35 A/Phase (4 Phases ON)

Permissible Torque

40

Speed [r/min]

Pulse Speed [kHz]

20 (40)

-Driver Input Current

10 (20)

20

With Damper **D4CL-5.0F**: $J_{L} = 0.186 \text{ oz-in}^{2} (34 \times 10^{-7} \text{ kg} \cdot \text{m}^{2})$

Full Step 0.0144°/step

-

80

Full Step (Half Step)

30 (60)

60

--- Half Step 0.0072°/step

Note:

The pulse input circuit responds up to approximately 100kHz with a pulse duty of 50%.

Common Specifications

	Input Signal Circuit	Photocoupler input, Input resistance 220 Ω , Input current 10~20 mA maximum Signal voltage Photocoupler ON: +4.5~+5 V, Photocoupler OFF: 0~+1 V (Voltage between terminals)		
	• Pulse Signal (CW Pulse Signal)	Step command pulse signal (CW step command signal at 2-pulse input mode) Pulse width: 5 μ s minimum, Pulse rise/fall: 2 μ s maximum Pulse duty: Max. 50% Motor moves when the photocoupler state changes from ON to OFF. Maximum input frequency : 100 kHz (When the pulse duty is 50%) Negative logic pulse input.		
Input Signals	 Rotation Direction Signal (CCW Pulse Signal) 	Rotation direction signal Photocoupler ON: CW, Photocoupler OFF: CCW CCW step command signal at 2-pulse input mode. Pulse width: 5 μs minimum, Pulse rise/fall: 2 μs maximum. Pulse duty: Max. 50% Motor moves when the photocoupler state changes from ON to OFF. Maximum input frequency : 100 kHz (When the pulse duty is 50%) Negative logic pulse input.		
	• Step Angle Signal	Full Step (0.72°) at "photocoupler OFF" Half Step (0.36°) at "photocoupler ON"		
-	• All Windings Off Signal	When in the "photocoupler ON" state, the current to the motor is cut off and the motor shaft can be rotated manually. When in the "photocoupler OFF" state, the current is supplied to the motor.		
-	Automatic Current Cutback Release Signal	When in the "photocoupler ON" state, the "Automatic Current Cutback" function at motor standstill is disabled. When in the "photocoupler OFF" state, the "Automatic Current Cutback" function at motor standstill is activated. (approximately 100 ms after motor stops).		
nals	Output Signal Circuit	Photocoupler, Open-Collector Output External use condition: 24 VDC maximum, 10 mA maximum		
Output Signals	• Excitation Timing Signal	Signal is output every time the excitation sequence returns to the initial "0". (Photocoupler: ON) Full step: signal is output every 10 pulses, Half step: Signal is output every 20 pulses		
F	unctions	Automatic current cutback, Pulse input mode switch, Step angle switch		
0	Priver Cooling Method	Natural ventilation		

General Specifications

Specifica	tions	Motor	Driver		
Insulation Class		Class B [266°F (130°C)]	—		
Insulation Resistance		$100M\Omega$ minimum under normal temperature and humidity, when measured by a 500 VDC megger between the motor coils and the motor casing.	_		
Dielectric Strength		Sufficient to withstand 0.5 kV, 60 Hz applied between the motor coils and casing for one minute, under normal ambient temperature and humidity.	_		
	Ambient Temperature	$14^\circ F \sim 122^\circ F$ ($-10^\circ C \sim +50^\circ C$): Standard Type, MG Geared Type	32°F∼ 104°F (0°C∼40°C)		
Operating Environment	Ampient Temperature	$32^\circ F \sim 104^\circ F$ ($0^\circ C \sim +40^\circ C$): HG Geared Type (nonfreezing)	(nonfreezing)		
	Ambient Humidity	85% or less (noncondensing)			
	Atmosphere	No corrosive gases, dust, water or oil			
Temperature Rise		Temperature rise of the coil measured by the Change Resistance Method is 144°F (80°C) or less. (at standstill, five phases energized)	—		
Static Angle Error *1		± 5 arc minutes ($\pm 0.084^{\circ}$)	—		
Shaft Runout		0.002 inch (0.05 mm) T.I.R at top of output shaft *4	—		
Radial Play *2		0.001 inch (0.025 mm) max. of 1.12 lb. (0.5 kg)	—		
Axial Play *3		0.003 inch (0.075 mm) max. of 2.2 lb. (1 kg)	—		
Concentricity		0.003 inch (0.075 mm) T.I.R *4	—		
Perpendicularity		0.003 inch (0.075 mm) T.I.R *4			

***1** This value is for full step under no load. (The value changes with size of the load.)

*2 Radial Play: Refers to the displacement in shaft position in the radial direction, when a 1.12 lb. (5 N) load is applied in the vertical direction to the tip of the motor's shaft.

*3 Axial Play: Refers to the displacement in shaft position in the axial direction, when a 2.2 lb. (10 N) load is applied to the motor's shaft in the axial direction.

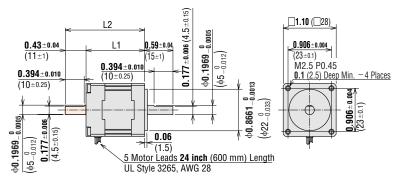
*4 T.I.R. (Total Indicator Reading): Refers to the total dial gauge reading when the measured section is rotated one revolution centered on a reference axis.

Note:

• Do not measure insulation resistance or perform the dielectric strength test while the motor and driver are connected.

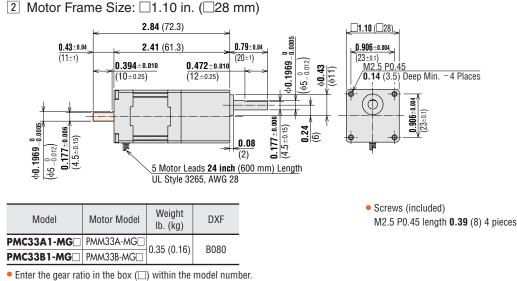
Permissible Overhung Load and Permissible Thrust Load

AS


1 0111133101	c overn				SSIDIC	Thrust Load Unit = Upper values: Ib./Lower values:
Model	Overh	ung Load Dis	stance from Sh	aft End [inch	(mm)]	Thrust Load
woder	0	0.2 (5)	0.39 (10)	0.59 (15)	0.79 (20)	THIUSELUUU
РМСЗП	5.6	7.6	11.7			The permissible thrust lead []h (N)] shall be no greater than the motor mass
PMCJ	25	34	52			The permissible thrust load [Ib. (N)] shall be no greater than the motor mass.
РМСЗЗ-МС	2	2.5	3.3	4.9		2.2
PMC33-MG	9.2	11.4	15	21.9	_	10
	31	36	45	54		22
РМСЗЗ-НС	140	160	200	240		100

Dimensions Scale 1/2, Unit = inch (mm)

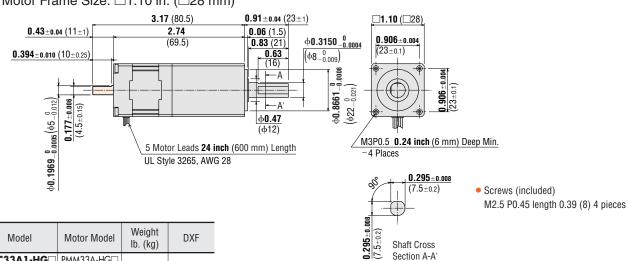
Motor


Standard Type

1 Motor Frame Size: □1.10 in. (□28 mm)

Model	Motor Model	L1 inch (mm)	L2 inch (mm)	Weight Ib. (kg)	DXF
PMC33A3	PMM33A2	1.22 (31)	—	0.22 (0.1)	B077
PMC33B3	PMM33B2	1.22 (31)	1.65 (42)	0.22 (0.1)	0077
PMC35A3	PMM35A2	1 00 (50 5)	_	0.37 (0.17)	B078
PMC35B3	PMM35B2	1.99 (00.0)	 2.42 (61.5)	0.37 (0.17)	DU/0

MG Geared Type

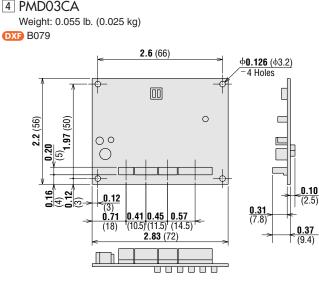


Closed Loop *Q*(STEP AC Input DC Input AS PLUS ASC AC Input 5-Phase Microstep RR DC Input CFKI CSK 2-Phase Full/Half AC Input DC Input UMK CSK without Encoder 2-Phase Stepping Motors without with PK/PV Encode Ŗ UI2120G EMP402 SG8030J Driver with Indexer Controllers SMK Low-Speed Synchronou: Motors Accessories

• These dimensions are for double shaft models. For single shaft models, ignore the shaded areas.

HG Geared Type

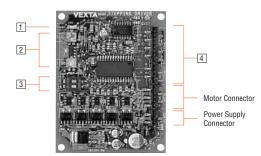
3 Motor Frame Size: 1.10 in. (28 mm)


• This dimension is for double shaft model. For single shaft model, ignore the shaded area.

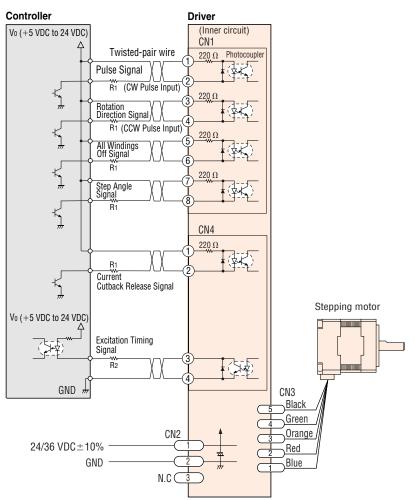
PMC33A1-HG PMM33A-HG

PMC33B1-HG PMM33B-HG

Driver


0.46 (0.21)

B234


•Connector Housings (included) 6-173977-3 (AMP): Power supply connector (CN2) 6-173977-4 (AMP): I/O signal connector (CN4) 6-173977-5 (AMP): Motor connector (CN3) 6-173977-8 (AMP): I/O signal connector (CN1)

Note:

Use the connector assembly tool (AMP 911790-1) when assembling the connectors. The connector tool is not provided with the package.

Connection Diagrams

1 Signal Monitor Display

Indicator	Color	Function
POWER	Green	Power input display

2 Current Adjustment Potentiometers

Indicator	Name	Functions
RUN	Motor run current	For adjusting the motor
KUN	potentiometer	running current
STOP	Motor stop current	For adjusting the motor
STUP	potentiometer	current at standstill

3 Function Select Switches

I	Indicator	Switch Name	Functions			
	5.01	F/H Step angle select switch	Switches the motor's step angle.			
	F/H		F: Full step, H: Half step			
	2P/1P	(1P Pulse input mode switch	Switches between 1-pulse input mode			
	26/16	Fuise input mode switch	and 2-pulse input mode			

4 Input/Output Signals

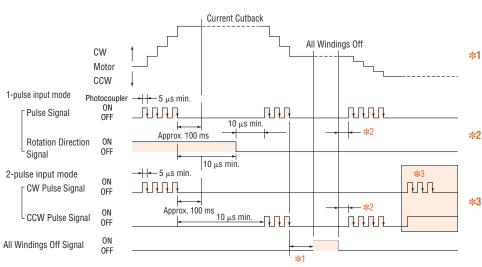
Connector	Input/Output	Pin No.	Terminal Name	
		1	Pulse Cignel (CW Pulse Cignel)	
		2	Pulse Signal (CW Pulse Signal)	
		3	Detetion Direction Cinnel (2014 Dules Cinnel)	
CN1	Input signal	4	Rotation Direction Signal (CCW Pulse Signal)	
	input orginal	5	All Windings Off Cignal	
		6	All Windings Off Signal	
		7	Step Angle Select Signal	
		8	Step Angle Select Signal	
	Input signal	1	Current Cutback Release Signal	
CN4	input signai	2	Guirein Guiback Helease Signal	
6114	Output oignal	3	Evolution Timing Clanck	
	Output signal	4	Excitation Timing Signal	

Notes:

- Keep the voltage Vo between 5 VDC and 24 VDC. When Vo is equal to 5 VDC, the external resistance R1 is not necessary. When Vo is above 5 VDC, connect R1 to keep the current between 10 mA and 20 mA, and connect R2 to keep the current below 10 mA.
- Use twisted-pair wire of AWG 28 or thicker and 6.6 feet (2 m) or less in length for the signal line.
- Note that as the length of the pulse signal line increases, the maximum transmission frequency decreased.
 (→Technical Reference Page F-36)
- Suitable wire size for the CN1, CN2, CN3 and CN4 connector is between AWG 28 and AWG26. Use AWG 26 for the power line. When assembling the connectors, use the hand-operated crimp tool for contact 911790-1(AMP). The crimp tool is not provided with the package.
- Signal lines should be kept at least 3.9 inches (10 cm) away from power lines (power supply lines and motor lines). Do not bind the signal line and power line together.
- If noise generated by the motor lead wire causes a problem, try shielding the motor lead wires with conductive tape or wire mesh.
- Incorrect connection of DC power input can lead to driver damage. Make sure that the polarity is correct before turning power on.

Power Supply

Keep the input power voltage to either 24 VDC \pm 10% or 36 VDC \pm 10%. Use a power supply that can supply sufficient input current.


Introduction

AS

Accessorie:

Timing Chart

Shaded area indicates the radiation of the photocoupler diode.

- Note: 10 μ s or more is the standard interval time for switching from CW to CCW. Note that the interval time varies greatly depending on the motor and load inertia.
 - Wait a period of time to allow the motor oscillations to end before inputting the "All Windings Off" signal. This time varies with the load inertia, the load torque and the starting pulse rate. The signal input must be stopped before the motor stops. Never input step pulse signals immediately after switching the "All Windings Off" input signal to the "photocoupler OFF" state, or the motor may lose synchronism. In general, a minimum interval of 100 ms is required. The motor will not operate properly when inputting a pulse signal while either the CW or CCW pulse is in the "photocoupler ON" state.

Description of Input/Output Signals

Pulse Input and Rotation Direction Signals

1-Pulse Input Mode

Pulse Input Signal

"Pulse" signal is input to the PLS/CW –terminal. When the photocoupler state changes from "ON" to "OFF", the motor rotates one step. The direction of rotation is determined by the rotation direction signal.

Rotation Direction Input Signal

The "Rotation Direction" signal is input to the DIR/CCW –terminal.

A "photocoupler ON" signal input commands a clockwise direction rotation. A "photocoupler OFF" signal input commands a counterclockwise direction rotation.

2-Pulse Input Mode

CW Pulse Input Signal

"Pulse" signal is input to the CW/P – terminal. When the photocoupler state changes from "ON" to "OFF", the motor rotates one step in the clockwise direction.

CCW Pulse Input Signal

"Pulse" signal is input to the CCW/D – terminal. When the photocoupler state changes from "ON" to "OFF", the motor rotates one step in the counterclockwise direction.

All Windings Off Input Signal

When the "All Windings Off" (Å.W.OFF) signal is in the "photocoupler ON" state, the current to the motor is cut off and motor torque is reduced to zero. The motor output shaft can then be rotated freely by hand. This signal is used when moving the motor by external force or to manual home position.

Step Angle Select Input Signal

When the "Step Angle Select" (F/H) signal is in the "photocoupler ON" state, half step mode has been selected; When the F/H signal is in the "photocoupler OFF" state, full step mode has been selected. (When using this input to select the step angle, the step angle switch should be set to "F" position).

Current Cutback Release Input Signal

When the "Current Cutback Release" (C UP) signal is in the "photocoupler ON" state, the "Automatic Current Cutback" function is not activated.

Excitation Timing Output Signal

The excitation timing signal is output once each time the excitation sequence returns to step "0" in synchronization with input pulse. The excitation sequence is designed to complete one cycle as the motor shaft rotates 7.2°. A signal is output every 10 pulses in full step mode and every 20 pulses in half step mode. (When the "Excitation Timing" signal is output, the transistor turns ON.)

How to Use Function Select Switches

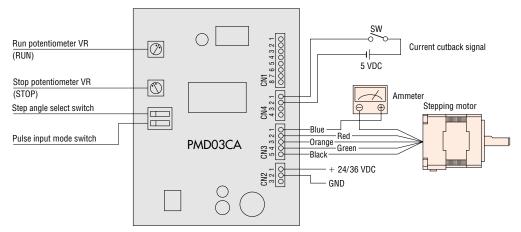
Step Angle Select

When the step angle select switch is set to "F" position, the setting is for full step. When set to "H" position, the setting is for half step.

Note:

The step angle can be set with not only the step angle select switch but the step angle select signal input. The unused step angle selection method should be set to FULL STEP. When either of them is set to HALF STEP, the setting is for half step.

Pulse Input Mode


When the pulse input mode select switch is set to "2P" position, the 2-pulse input mode is set. When the pulse input mode select switch is set to "1P" position, the 1-pulse input mode is set.

Adjusting the Driver Output Current

The rated output current is set at the factory. If it is necessary to change the current setting, follow the procedures described below.

Connecting an Ammeter

(1)Connect a DC ammeter between the motor and pin (1) of CN3 connector as shown below.

- (2)After connecting the DC ammeter to the motor, turn on the power. (The excitation status at this point is fixed: power on reset.)
- (3)When the power is turned on, the motor enters a 4 phase excitation state, and +directional current flows through the blue motor lead wire. (Even if 4-5 phase excitation has been selected, the motor enters a 4 phase excitation state when the power is turned on. Adjust the current in this state.)
- (4)The value measured by the ammeter represents the total current in two phases. The current for one phase is equivalent to half of the ammeter value. (When setting the current to 0.3 A/phase, adjust the current level until the ammeter reads 0.6 A.)

Notes:

- Never input pulse signals.
- · Select "photocoupler OFF" for "All Windings Off" signal. (Select "photocoupler OFF" when the switch is open.)
- . When the RUN current is adjusted, the current at motor standstill also changes.

Adjusting the Motor Running Current

Set "Current Cutback Release" signal to the "photocoupler ON" state when adjusting the RUN current.

- (1)Adjust the motor RUN current with the RUN potentiometer.
 - Adjusting range
 - PMD03CA: 0.07 A/phase to 0.35 A/phase
- (2)The motor running current is set for rated current at the time of shipping, but it can be readjusted using the RUN potentiometer. The running current can be lowered to suppress temperature rise in the motor/driver, or lower running current in order to allow a margin for motor torque or to reduce vibration.

Note:

• The motor RUN current should be less than the motor rated current.

Adjusting the Current at Motor Standstill

Set "Current Cutback Release" signal to the "photocoupler OFF" state when adjusting the current while the motor is stopped.

(1)Adjust the current at motor standstill with the STOP potentiometer.

Adjusting range

PMD03CA: 0.07 A/phase to 0.28 A/phase

(2)At the time of shipping, the current at motor standstill is set for half of rated current. The STOP potentiometer can be used to readjust the current at motor standstill to the current value required to produce enough holding torque.

torque	_	$\begin{array}{l} \text{Maximum} \\ \text{holding torque} \times \\ [\text{oz-in (N \cdot m)}] \end{array}$	Current at motor standstill [A]
l∙m)]	-	Motor rated of	current [A]

Holding [oz-in (N·m)]

Stepping Motors

Introduction

AS

AS PLUS

ASC

RR

СЕКП

CSK

UMK

CSK

PK/PV

PR

UI2120G

EMP401 EMP402

SG8030J

SMK

Accessorie:

Closed Loop *Uster* DC Input

AC Input 5-Phase Microstep

DC Input Driver Pac

Full/Half PMC

2-Phase Full/Half AC Input DC Input

without Encoder 2-Phase Stepping Motors without with

Encode

Driver with Indexe

Controllers

List of Motor and Driver Combinations

Туре	Model	Motor Model	Driver Model
Standard	PMC33_3	PMM33_2	
Stalluaru	PMC35_3	PMM35_2	
	PMC33[1-MG3.6	PMM33MG3.6	
	PMC3301-MG7.2	7.2 PMM33□-MG7.2	
MG Geared	PMC3301-MG10	PMM33 -MG10	PMD03CA
	PMC33□1-MG20	PMM33 -MG20	
	PMC33□1-MG30	PMM33MG30	
HG Geared	PMC33_1-HG50	PMM33 -HG50	
HG Geared	PMC33□1-HG100	PMM33 -HG100	

 \bullet Enter ${\bf A}$ (single shaft) or ${\bf B}$ (double shaft) in the box () within the model numbers