Orientalmotor

ROHS RoHS-Compliant Compact Linear Actuators DRL Series

Lead Screw Types: Ground Ball Screw Type/Rolled Ball Screw Type Additional Functions: With Adjusting Knob/With Electromagnetic Brake

The DRL Series motor-integrated compact actuator features a hollow rotor incorporating large bore thrust bearings.

The DRL Series Allows for Size Reduction While Improving the Accuracy of Your Equipment.

The drive mechanism adopts a 5-phase stepping motor with ball screw. The DRL Series achieves high positioning accuracy in a space-saving design.
The extensive lineup includes a high-resolution motor and longer stroke.

Ground Ball Screw, High-Resolution Motor

Rolled Ball Screw, Standard Motor, Longer Stroke
Compact Linear Actuators
DRL Series

Compact Design and High Positioning Accuracy

The actuator size was reduced by using Oriental Motor's original technology. The compact and lightweight body houses the rotating components as well as the linear motion mechanism of the stepping motor. The DRL Series helps to achieve a significant reduction in the size of your equipment and system.
To meet the user's requirements for higher positioning accuracy, all models can be ordered with a ground ball screw model [repetitive positioning accuracy: $\pm 0.005 \mathrm{~mm}$ (± 0.0002 in.)].

Actual Size DRL20PB1-02

Frame Size
20 mm
(0.79 in.)

Reliable Design and Structure

The hollow rotor shaft incorporates large bore bearings for the direct handling of thrust loads. Minimizing the number of parts involved in linear conversion results in higher reliability.

Repetitive Positioning Accuracy
$\pm 0.005 \mathrm{~mm}$
-An external anti-spin mechanism must be provided with the standard type.

Significantly Fewer Parts and Required Man-Hours

The compact body houses the entire linear-motion mechanism, with some of the conventional parts eliminated for a more streamlined structure. This substantially reduces the man-hours required for design and assembly of your equipment, so you will enjoy higher production efficiency.

(± 0.0002 in.)
in.)

Wide Range of Variations

A High-Resolution Motor and Longer Stroke are Available

Depending on the level of accuracy required, you can choose either the ground ball screw or rolled ball screw. As for the motor, you can choose from two types-the standard motor and highresolution motor-according to your requirements.
The longer stroke models have been designed to reflect the requests from our customers. The expanded lineup provides a broader range of models to meet a wider range of applications.

An Extensive Lineup That Addresses All Your Needs

Review our extensive lineup of compact linear actuators, and choose the one that suits your particular application.

Motor Types

- High-Resolution Motor
- Standard Motor

- If you choose the standard type, you must provide an external anti-spin mechanism.

Accessories

- Mounting Plate
- Motor Lead Wire/Connector Assembly
- Motor Connector Set
- Driver Lead Wire Set

Utility accessories are also available

- For details, refer to page 39.

Lead Screw Types

Ground Ball Screw

Ideal for applications where high positioning accuracy and low vibration are required, such as optical devices and semiconductor systems that use fine-feed pitches. The
DRL ground ball screw type achieves high reliability by maximizing the performance advantages of a 5-phase stepping motor.

- Rolled Ball Screw

Ideal for general positioning applications where reliability and ease of use are given priority. It combines the superior thrust and resolution of the ground ball screw type with greater ease of use.

Additional Functions

The standard type and guide type are available with an electromagnetic brake and/or adjusting knob as additional functions.

- With Electromagnetic Brake

The load position can be held when the power is cut off. Since the work will not fall in case of power failure or disconnection, you can safely use equipment in which the work moves vertically.

Application

The CCD camera's Z-position is held when the power is cut off.

- With Adjusting Knob

The load position can be adjusted manually when the power is cut off. This function is useful during servicing of the equipment.

High-Resolution Motor

Improved Positioning Accuracy Achieved with the High-Resolution Motor

The high-resolution motors achieve high accuracy and reliability based on Oriental Motor's latest precision machining technology. The motor resolution is increased to double the level of a standard model to reduce the displacement angle against load torque, thereby achieving high positioning accuracy. Frame sizes of 28 mm (1.10 in.), 42 mm (1.65 in.) and 60 mm (2.36 in.) are available.

Standard motor: 50 teeth
Resolution: 500 per rotation

Resolution is increased!

High-resolution motor: 100 teeth Resolution: 1000 per rotation

Ideal for Applications Requiring FineFeed and Fine Adjustment
In fine-feed operations by microsteps, the actuator will not operate until the initial motor torque exceeds the friction load. The high-resolution motor, with its high output torque, allows the torque to pick up quickly and thereby ensures smooth operation even with fine-feed.

Comparison of Positioning Error
(Comparison in the DRL42 type)
Positioning Error with the Standard Motor

Pitch error is reduced by nearly half! *Comparison with the standard motor
Positioning Error with the High-Resolution Motor

Longer Stroke

Longer Stroke to Support Various Operations

The ground ball screw type and rolled ball screw type with standard motor [frame size: 28 mm (1.10 in.), 42 mm (1.65 in.), 60 mm (2.36 in.)] are now available with longer strokes. The longer stroke models of the DRL Series extend the sphere of applications. The DRL Series meets the needs of our customers, including the need for longer strokes.

Longer Stroke

■ Lead Screw Type:
Ground ball screw, Rolled ball screw

- Motor type: Standard motor

■ Actuator type: Standard
\square Additional function: None

Actuator Frame Size mm (in.)	$\square 28$	$\square 42$	$\square 60$
	$\square 1.10)$	$(\square 1.65)$	$(\square 2.36)$
	30	40	50
Stroke Length mm (in.)	(1.18)	(1.57)	(1.97)
	60	100	100
	(2.36)	(3.94)	(3.94)

- RoHS RoHS-Compliant

The DRL Series conforms to the RoHS Directive that prohibits the use of six chemical substances including lead and cadmium.

RoHS (Restriction of Hazardous Substances) Directive:
Directive on restriction of the use of certain hazardous substances in electrical and electronic equipment (2002/95/EC).
The RoHS Directive prohibits the use of six chemical substances in electrical and electronic products sold in the EU member states. The six controlled substances are: lead, hexavalent chromium, cadmium, mercury and two specific brominated flame-retardants (PBB and PBDE).

Compact, Lightweight Microstep Driver

Compact DC Input Board Driver Meeting the Space-Saving Needs

The compact, lightweight driver implements microstep drive. The new IC provides a wide range of functions, including the following:

- Smooth Drive Function

1-pulse/2-pulse input mode switching - 25 microstep drive resolutions

- Power LED
- Photocoupler input

Connector with safety lock (by MOLEX)

- Conforming to major safety standards

Smooth Drive Function Embodies Quieter Operation

The Smooth Drive Function automatically controls the motor's microstep drive operation at the same travel and speed in the full-step mode, without the operator having to change the pulse input settings. This function is especially useful when used in the full-step or half-step mode.

Comparison of Speed Fluctuation

- Compact Microstep Driver

The microstep drive system allows you to set high resolutions up to one-250th of the basic resolution of the actuator. This function is effective in meeting your low-vibration/low-noise operation needs at low speeds. The high-performance driver is also compact and lightweight, achieving a reduction of approximately 47% in size

 compared with a conventional microstep driver.

Comparison of Driver Size and Mass

Applications

Drive mechanism for a micrometer head $\mathrm{X}-\mathrm{Y}$ stage

Pin lifter

Fine-tuning of nozzle position

Fine-tuning of sensor position

Automatic micro-plate dispensing

Fine-tuning of flow-rate regulator valve setting

Vertical fine-tuning of table position

Centering of board

Adjusting a mirror positioning device

Focusing of a CCD camera

Vertical movement of probe

Driving a pump actuator device

Selection of the DRL Series

You can choose the one that best suits your specific needs from a wide range of functions.

Rolled ball screw

- Standard motor, longer stroke

Ground ball screw

- High-resolution motor
- Standard motor, longer stroke

Conforming to Major Safety Standards

The actuator and driver are designed to conform to the various major safety standards, including the UL Standard. They bear the CE Mark as proof of compliance with EMC Directive.
${ }^{c} \mathbf{N}_{\text {us }}$ (ϵ

Lead Screw Type	Rolled Ball Screw Type Repetitive positioning accuracy: $\pm 0.02 \mathrm{~mm}$ (± 0.00079 in.			$\begin{gathered} \text { Ground Ball Screw Type } \\ \text { Repeetitive Positioning Accuracy: } \pm 0.005 \mathrm{~mm}(\pm 0.0002 \mathrm{in}) \end{gathered}$					
	CRD51ロपP (Microstep driver)			CRD51 \qquad (Microstep driver)					
Motor Type	Standard Motor			Standard Motor			High-Resolution Motor		
Additional Function	$\stackrel{\text { ¢ }}{2}$						$\stackrel{\circ}{5}$		
	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-
	\bullet	-	-	\bullet	-	-	-	-	-
	-	-	\bullet	-	-	-	-	-	-
	\bullet	-	-	-	-	-	\bullet	-	\bullet
	\bullet	-	-	\bullet	-	-	-	-	-
	-	\bullet	\bullet	-	\bullet	-	-	-	\bullet
	\bullet	-	-	-	\bullet	\bullet	-	-	\bullet
	\bullet	-	-	-	-	-	-	-	-
	-	\bullet	\bullet	-	\bullet	-	-	-	\bullet
	\bullet	\bullet	\bullet	\bullet	\bullet	-	\bullet	\bullet	\bullet

System Configuration

An example of a system configuration with the SG8030 Series controller.

- Example of System Configuration

The system configuration shown above is an example. Other combinations are available.

Safety Standards and CE Marking

Product	Model	Applicable Standards	Certification Body	Standards File No.	CE Marking
Motor	SM \square P(M)				
	SM $\square P(M) G$				
	SM $\square P(M) M$	UL 60950			
	SM $\square P(M) H$	CSA C22.2 No.60950	UL		
	SM $\square P(M) G M$			E208200	EMC Directives
	SM $\square P(M) G H$				
Driver	CRD5103P	UL 60950			
	CRD5107P	CSA C22.2 No.60950	UL		
	CRD5114P				

- Enter the code for frame size in the box (\square) within the model name.

When the package is approved under various safety standards, the approved model names for various safety standards are the motor and driver names.

- Approved Conditions (UL 60950): Class III equipment, SELV circuit, Pollution degree 2
DRL 28 P B 1 G-03 NG
(1)
(2)
(3) (4) (5) (6)
(7)
(9)

(1)	Series	DRL: DRL Series
(2)	Frame Size	20: $\square 20 \mathrm{~mm}$ ($\square 0.79 \mathrm{in}.) \mathbf{2 8 :} \square 28 \mathrm{~mm}(\square 1.10 \mathrm{in}$.) 42: $\square 42 \mathrm{~mm}(\square 1.65 \mathrm{in}$.) $\mathbf{6 0}: \square 60 \mathrm{~mm}$ ($\square 2.36 \mathrm{in}$.)
(3)	Motor Type	M: High-Resolution Motor P: Standard Motor
(4)	Lead Screw Type	A: Rolled Ball Screw Type B: Ground Ball Screw Type
(5)	Lead	$\mathbf{1 : 1 m m}(0.039 \mathrm{in}$.) $[\square 20 \mathrm{~mm}, 28 \mathrm{~mm}(\square 0.79 \mathrm{in}, 1.10 \mathrm{in}$.)] 2: $2 \mathrm{~mm}(0.079 \mathrm{in}).[\square 42 \mathrm{~mm}(\square 1.65 \mathrm{in})$. 4: 4 mm (0.157 in .) $[\square 60 \mathrm{~mm}$ ($\square 2.36 \mathrm{in}$.)]
(6)	Actuator Type	None: Standard Type (Without Guide) G: Guide Type
(7)	Stroke	02: 25 mm (0.98 in.) $\square \square 20 \mathrm{~mm}$ ($\square 0.79 \mathrm{in}$.)] 03: 30 mm (1.18 in .) $\square \square 28 \mathrm{~mm}$ ($\square 1.10 \mathrm{in}$.)] 04: 40 mm (1.57 in .) $\square \square 42 \mathrm{~mm}(\square 1.65 \mathrm{in})$. 05: $50 \mathrm{~mm}(1.97 \mathrm{in}$.$)) \square 60 \mathrm{~mm}(\square 2.36 \mathrm{in})$. 06: 60 mm (2.36 in .) $\square \square 28 \mathrm{~mm}$ ($\square 1.10 \mathrm{in}$.)] 10: 100 mm (3.94 in .) $\square \square 42 \mathrm{~mm}, 60 \mathrm{~mm}$ ($\square 1.65 \mathrm{in}, 2.36 \mathrm{in}$.)]
(8)	Additional Function	None: Without Additional Function \mathbf{M} : With Electromagnetic Brake \mathbf{N} : With Adjusting Knob
(9)	Driver Type	G: CRD51 $\square \square \mathrm{P}$

Product Line

Rolled Ball Screw, Standard Motor

$\begin{gathered} \text { Frame Size } \\ \mathrm{mm} \text { (in.) } \end{gathered}$	\qquad Actuator Type	None	With Electromagnetic Brake	With Adjusting Knob
		Model	Model	Model
$\begin{gathered} \square 28 \\ (\square 1.10) \end{gathered}$	Standard Type	DRL28PA 1-03G	-	DRL28PA1-03NG
		DRL28PA1-06G	-	-
	Guide Type	DRL28PA 1G-03G	-	DRL28PA 1 G-03NG
$\begin{gathered} \square 42 \\ (\square 1.65) \end{gathered}$	Standard Type	DRL42PA2-04G	DRL42PA2-04MG	DRL42PA2-04NG
		DRL42PA2-10G	-	-
	Guide Type	DRL42PA2G-04G	DRL42PA2G-04MG	DRL42PA2G-04NG
$\begin{gathered} \square 60 \\ (\square 2.36) \end{gathered}$	Standard Type	DRL60PA4-05G	DRL60PA4-05MG	DRL60PA4-05NG
		DRL60PA4-10G	-	-
	Guide Type	DRL60PA4G-05G	DRL60PA4G-05MG	DRL60PA4G-05NG

- Ground Ball Screw, High-Resolution Motor

Frame Size mm (in.)	Actuator Type	None	With Electromagnetic Brake	With Adjusting Knob
		Model	Model	Model
$\begin{gathered} \square 28 \\ (\square 1.10) \end{gathered}$	Standard Type	DRL28MB 1-03G	-	DRL28MB1-03NG
	Guide Type	DRL28MB 1G-03G	-	DRL28MB 1 G-03NG
$\begin{gathered} \square 42 \\ (\square 1.65) \end{gathered}$	Standard Type	DRL42MB2-04G	DRL42MB2-04MG	DRL42MB2-04NG
	Guide Type	DRL42MB2G-04G	DRL42MB2G-04MG	DRL42MB2G-04NG
$\begin{gathered} \square 60 \\ (\square 2.36) \end{gathered}$	Standard Type	DRL60MB4-05G	DRL60MB4-05MG	DRL60MB4-05NG
	Guide Type	DRL60MB4G-05G	DRL60MB4G-05MG	DRL60MB4G-05NG

- Ground Ball Screw, Standard Motor

Frame Size mm (in.)	Additional Function Actuator Type	None	With Electromagnetic Brake	With Adjusting Knob
		Model	Model	Model
$\begin{gathered} \square 20 \\ (\square 0.79) \end{gathered}$	Standard Type	DRL20PB1-02G	-	DRL20PB1-02NG
	Guide Type	DRL20PB1G-02G	-	DRL20PB 1G-02NG
$\begin{gathered} \square 28 \\ (\square 1.10) \end{gathered}$	Standard Type	DRL28PB 1-03G	-	DRL28PB1-03NG
		DRL28PB1-06G	-	-
	Guide Type	DRL28PB1G-03G	-	DRL28PB 1 G-03NG
$\begin{gathered} \square 42 \\ (\square 1.65) \end{gathered}$	Standard Type	DRL42PB2-04G	DRL42PB2-04MG	DRL42PB2-04NG
		DRL42PB2-10G	-	-
	Guide Type	DRL42PB2G-04G	DRL42PB2G-04MG	DRL42PB2G-04NG
$\begin{gathered} \square 60 \\ (\square 2.36) \end{gathered}$	Standard Type	DRL60PB4-05G	DRL60PB4-05MG	DRL60PB4-05NG
		DRL60PB4-10G	-	-
	Guide Type	DRL60PB4G-05G	DRL60PB4G-05MG	DRL60PB4G-05NG

[^0]
Specifications

- Actuator

Ground Ball Screw, High-Resolution Motor RoHS
${ }_{c} \ln _{\text {us }} \mathrm{C} \epsilon$

Model	$\begin{aligned} & \text { DRL28MB 1-03G } \\ & \text { DRL28MB 1-03NG } \end{aligned}$	$\begin{aligned} & \text { DRL42MB2-04G } \\ & \text { DRL42MB2-04NG } \end{aligned}$	DRL42MB2-04MG	DRL60MB4-05G DRL60MB4-05NG	DRL60MB4-05MG
Electromagnetic Brake	Not equipped	Not equipped	Equipped	Not equipped	Equipped
Max. Vertical Transportable Mass*1 kg (lb.)	3 (6.6)	10 (22)		30 (66)	
	24 (0.94)	15 (0.59)		22 (0.87)	
Maximum Acceleration $\mathrm{m} / \mathrm{s}^{2}\left(\mathrm{ft} / \mathrm{s}^{2}\right)$	0.2 (0.66)	0.2 (0.66)		0.26 (0.85)	
Maximum Thrust Force*3 N (lb.)	30 (6.7)	100 (22)		300 (67)	
At Excitation*4 N (lb .)	30 (6.7)	100 (22)		300 (67)	
Maximum Holding Force At Non-Excitation	0	0	0	0	0
Electromagnetic Brake N (lb.)	-	-	100 (22)	-	300 (67)
Repetitive Positioning Accuracy mm (in.)	± 0.005 (0.0002)				
Lost Motion mm (in.)	0.05 (0.002)				
Resolution*5 ${ }^{\text {* }} \mathrm{mm}$ (in.)	0.001 (0.000039)	0.002 (0.000079)		0.004 (0.00016)	
Lead mm (in.)	1 (0.039)	2 (0.079)		4 (0.157)	
Stroke $\quad \mathrm{mm}$ (in.)	30 (1.18)	40 (1.57)		50 (1.97)	
Mass [Mass with adjusting knob] kg (lb.)	0.18 (0.39) [0.19 (0.41)]	0.6 (1.32) [0.6 (1.32)]	0.8 (1.76)	1.3 (2.8) [1.35 (2.9)]	1.7 (3.7)
Actuator Dimensions No.	1	2	3	4	5

Ground Ball Screw, High-Resolution Motor, Guide Type RoHS
c $9 \mathrm{NS}_{\text {is }} \mathrm{CE}$

* 1 When the power is turned off, or output current is turned off (non-excitation state), the actuator loses its thrust force or holding force. As such, it can no longer keep the load in position or withstand an external force.
* 2 Use the actuator at or below the following maximum speed in a low-temperature environment $\left[0\right.$ to $+10^{\circ} \mathrm{C}\left(+32\right.$ to $\left.\left.+50^{\circ} \mathrm{F}\right)\right]$. DRL28: $12 \mathrm{~mm} / \mathrm{s}(0.47 \mathrm{in} / \mathrm{s})$
* 3 The maximum thrust force is measured during constant-speed operation in horizontal operation with no load applied to the moving parts (screw shaft and joint). Thrust force varies with load mass and acceleration.
*4 The maximum holding force at excitation is the value when the automatic current cutback function is ON (50% of the rated current).
*5 25 resolutions can be set.
Note:
Use the actuator in conditions where its surface temperature will not exceed $90^{\circ} \mathrm{C}\left(194^{\circ} \mathrm{F}\right)$. The repetitive positioning accuracy is measured at a specified temperature under a specified load.

- Repetitive Positioning Accuracy

(1) Repetitive positioning accuracy is measured at the end of the guide.
(2) Repetitive positioning accuracy is measured on the linearguide.
If footnote (1) or (2) is not indicated, then the accuracy values are identical.

Ground Ball Screw, Standard Motor RoHS
${ }_{c} \operatorname{Sis}_{\text {us }} \mathrm{C} \epsilon$

Model			DRL2OPB1-02G DRL2OPB1-02NG	DRL28PB1-03G DRL28PB1-06G DRL28PB1-03NG	$\begin{aligned} & \text { DRL42PB2-04G } \\ & \text { DRL42PB2-10G } \\ & \text { DRL42PB2-04NG } \end{aligned}$	DRL42PB2-04MG	DRL60PB4-05G DRL60PB4-10G DRL60PB4-05NG	DRL60PB4-05MG
Electromagnetic Brake			Not equipped	Not equipped	Not equipped	Equipped	Not equipped	Equipped
Max. Vertical Transportable Mass*1 kg (lb.)			1.5 (3.3)	3 (6.6)	10 (22)		30 (66)	
Maximum Speed*2 ${ }^{*} \mathrm{~mm} / \mathrm{s}$ (in./s)			20 (0.79)	24 (0.94)	30 (1.18)		32 (1.26)	
Maximum Acceleration		$\mathrm{m} / \mathrm{s}^{2}\left(\mathrm{ft} / \mathrm{s}^{2}\right)$	0.2 (0.66)	0.2 (0.66)	0.4 (1.3)		0.26 (0.85)	
Maximum Thrust Force*3		N (lb.)	15 (3.3)	30 (6.7)	100 (22)		300 (67)	
Maximum Holding Force	At Excitation*4	N (lb.)	15 (3.3)	30 (6.7)	100 (22)		300 (67)	
	At Non-Excitation	N (lb.)	0	0	0	0	0	0
	Electromagnetic Brake	N (lb.)	-	-	-	100 (22)	-	300 (67)
Repetitive Positioning Accuracy mm (in.)			± 0.005 (0.0002)					
Lost Motion mm (in.)			0.05 (0.002)					
Resolution*5		mm (in.)	0.002 (0.000079)	0.002 (0.000079)	0.004 (0.00016)		0.008 (0.00031)	
Lead mm (in.)			1 (0.039)		2 (0.079)		4 (0.157)	
Stroke		mm (in.)	25 (0.98)	$\begin{aligned} & \text { 03: } 30(1.18) \\ & \text { 06: } 60(2.36) \end{aligned}$	$\begin{aligned} & \text { 04: } 40(1.57) \\ & \text { 10: } 100(3.94) \\ & \hline \end{aligned}$	40 (1.57)	$\begin{aligned} & \text { 05: } 50(1.97) \\ & \text { 10: } 100(3.94) \\ & \hline \end{aligned}$	50 (1.97)
Mass [Mass with adjusting knob]		kg (lb.)	0.08 (0.17) [0.08 (0.17)]	$\begin{array}{\|c\|} \hline \text { 03: } 0.18(0.39)[0.19(0.41)] \\ 06: 0.18(0.39) \end{array}$	$\begin{gathered} \hline \text { 04: } 0.6(1.32)[0.6(1.32)] \\ 10: 0.63(1.38) \end{gathered}$	0.8 (1.76)	$\begin{gathered} \mathbf{0 5 :} 1.3(2.8)[1.35(2.9)] \\ 10: 1.38(3.0) \\ \hline \end{gathered}$	1.7 (3.7)
Actuator Dimensions No.			11	03: 12 06: 13	04: 16 10: 17	18	05: 19 10:20	21

Ground Ball Screw, Standard Motor, Guide Type RoHS

Model			$\begin{aligned} & \hline \text { DRL2OPB 1G-02G } \\ & \text { DRL2OPB 1G-02NG } \end{aligned}$	$\begin{aligned} & \text { DRL28PB 1G-03G } \\ & \text { DRL28PB 1G-03NG } \end{aligned}$	$\begin{aligned} & \hline \text { DRL42PB2G-04G } \\ & \text { DRL42PB2G-04NG } \end{aligned}$	DRL42PB2G-04MG	DRL60PB4G-05G DRL60PB4G-05NG	DRL60PB4G-05MG
Electromagnetic Brake			Not equipped	Not equipped	Not equipped	Equipped	Not equipped	Equipped
Max. Horizontal Transportable Mass (Fig. A)			0.5 (1.1)	1 (2.2)	2 (4.4)		3 (6.6)	
Max. Vertical Transportable Mass (Fig. B)*1 kg (lb.)			1 (2.2)	1.5 (3.3)	5 (11)		15 (33)	
Maximum Speed*2 ${ }^{* 2} \mathrm{~mm} / \mathrm{s}$ (in./s)			20 (0.79)	24 (0.94)	30 (1.18)		32 (1.26)	
Maximum Acceleration $\mathrm{m} / \mathrm{s}^{2}\left(\mathrm{ft} . / \mathrm{s}^{2}\right)$			0.2 (0.66)	0.2 (0.66)	0.4 (1.3)		0.26 (0.85)	
Maximum Thrust Force*3		N (b.)	15 (3.3)	30 (6.7)	100 (22)		300 (67)	
Maximum Holding Force	At Excitation*4	N (lb.)	15 (3.3)	30 (6.7)	100 (22)		300 (67)	
	At Non-Excitation	N (lb.)	0	0	0	0	0	0
	Electromagnetic Brake	N (b.)	-	-	-	100 (22)	-	300 (67)
Maximum Load Moment		$\mathrm{N} \cdot \mathrm{m}$ (0z-in)	$M_{p}: 0 \quad M_{r}: 0 \quad M_{R}: 0$		Mp: 0.5 (71) My: 0.25 (35) Mr: 0.8 (113)		Mp: 0.6 (85) Mr: 0.35 (49) Mr: 2.2 (310)	
Repetitive Positioning Accuracy		mm (in.)	(1) $\pm 0.055(0.0002)(2) \pm 0.01$ (0.00039)	(1) $\pm 0.005(0.0002)(2 \pm 0.02(0.0079)$	(1) ± 0.005 (0.0002) (2) ± 0.01 (0.00039)			
Lost Motion		mm (in.)			0.05 (0.002)			
Resolution*5		mm (in.)	0.002 (0.000079)	0.002 (0.000079)	0.004 (0.00016)		0.008 (0.00031)	
Lead		mm (in.)	1 (0.039)		2 (0.079)		4 (0.157)	
Stroke		mm (in.)	25 (0.98)	30 (1.18)	40 (1.57)		50 (1.97)	
Mass [Mass with adjusting knob]		kg (b.)	0.14 (0.3) [0.15 (0.33)]	0.25 (0.55) [0.26 (0.57)]	0.8 (1.76) [0.8 (1.76)]	1.0 (2.2)	1.8 (3.9) [1.85 (4.0)]	2.2 (4.8)
Actuator Dimensions No.			22	23	24	(25)	26	27

* 1 When the power is turned off, or output current is turned off (non-excitation state), the actuator loses its thrust force or holding force. As such, it can no longer keep the load in position or withstand an external force.
*2 Use each actuator at or below the following maximum speed in a low-temperature environment $\left[0\right.$ to $+10^{\circ} \mathrm{C}\left(+32\right.$ to $\left.\left.+50^{\circ} \mathrm{F}\right)\right]$.
DRL20: $13 \mathrm{~mm} / \mathrm{s}(0.51 \mathrm{in} . / \mathrm{s})$, DRL28: $15 \mathrm{~mm} / \mathrm{s}(0.59 \mathrm{in} . / \mathrm{s})$, DRL42: $20 \mathrm{~mm} / \mathrm{s}(0.79 \mathrm{in} . / \mathrm{s})$, DRL60: $24 \mathrm{~mm} / \mathrm{s}(0.94 \mathrm{in} . / \mathrm{s})$
* 3 The maximum thrust force is measured during constant-speed operation in horizontal operation with no load applied to the moving parts (screw shaft and joint). Thrust force varies with load mass and acceleration.
* 4 The maximum holding force at excitation is the value when the automatic current cutback function is 0 N (50% of the rated current).
* 525 resolutions can be set.

Note:
Use the actuator in conditions where its surface temperature will not exceed $90^{\circ} \mathrm{C}\left(194^{\circ} \mathrm{F}\right)$. The repetitive positioning accuracy is measured at a specified temperature under a specified load.

- Maximum Transportable Mass

- Repetitive Positioning Accuracy

(1) Repetitive positioning accuracy is measured at the end of the guide.
(2) Repetitive positioning accuracy is measured on the linearguide.
If footnote (1) or (2) is not indicated, then the accuracy values are identical.

Rolled Ball Screw, Standard Motor RoHS
${ }^{-} \mathbf{N S}_{\text {us }}$ C

Model	DRL28PA 1-03G DRL28PA1-06G DRL28PA1-03NG	DRL42PA2-04G DRL42PA2-10G DRL42PA2-04NG	DRL42PA2-04MG	DRL60PA4-05G DRL60PA4-10G DRL60PA4-05NG	DRL60PA4-05MG
Electromagnetic Brake	Not equipped	Not equipped	Equipped	Not equipped	Equipped
Max. Vertical Transportable Mass*1 ${ }^{\text {kg (lb.) }}$	3 (6.6)	10 (22)		30 (66)	
Maximum Speed*2 ${ }^{*} \mathrm{~mm} / \mathrm{s}$ (in./s)	24 (0.94)	30 (1.18)		32 (1.26)	
Maximum Acceleration $\mathrm{m} / \mathrm{s}^{2}\left(\mathrm{ft} / \mathrm{s}^{2}\right)$	0.2 (0.66)	0.4 (1.3)		0.26 (0.85)	
Maximum Thrust Force*3 N (lb.)	30 (6.7)	100 (22)		300 (67)	
Maximum Excitation*4 ${ }^{*}$ N (lb.)	30 (6.7)	100 (22)		300 (67)	
$\begin{array}{ll}\text { Maximum } \\ \text { Holding Force } \\ & \text { At Non-Excitation } \\ \end{array}$	0	0	0	0	0
Electromagnetic Brake N (lb.)	-	-	100 (22)	-	300 (67)
Repetitive Positioning Accuracy mm (in.)	± 0.02 (0.00079)				
Lost Motion mm (in.)	0.1 (0.0039)				
Resolution*5 mm (in.)	0.002 (0.000079)	0.004 (0.00016)		0.008 (0.00031)	
Lead mm (in.)	1 (0.039)	2 (0.079)		4 (0.157)	
Stroke mm (in.)	$\begin{aligned} & \text { 03: } 30(1.18) \\ & \text { 06: } 60(2.36) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 04: } 40 \text { (1.57) } \\ & \text { 10: } 100(3.94) \end{aligned}$	40 (1.57)	$\begin{aligned} & \text { 05: } 50(1.97) \\ & \text { 10: } 100(3.94) \\ & \hline \end{aligned}$	50 (1.97)
Mass [Mass with adjusting knob] kg (lb.)	$\begin{gathered} \text { 03: } 0.18 \text { (0.39) }[0.19(0.41)] \\ \mathbf{0 6}: 0.18(0.39) \\ \hline \end{gathered}$	$\begin{gathered} \text { 04: } 0.6(1.32)[0.6(1.32)] \\ \mathbf{1 0}: 0.63(1.38) \end{gathered}$	0.8 (1.76)	$\begin{gathered} \text { 05: } 1.3(2.8)[1.35(2.9)] \\ \mathbf{1 0}: 1.38(3.0) \end{gathered}$	1.7 (3.7)
Actuator Dimensions №.	03: 144 06: 15	04: 16 10: 17	18	05: 19 10: 20	21

Rolled Ball Screw, Standard Motor, Guide Type RoHS

Model	$\begin{aligned} & \text { DRL28PA } 1 \text { G-03G } \\ & \text { DRL28PA } 1 \text { G-03NG } \end{aligned}$	$\begin{aligned} & \text { DRL42PA2G-04G } \\ & \text { DRL42PA2G-04NG } \end{aligned}$	DRL42PA2G-04MG	DRL60PA4G-05G DRL60PA4G-05NG	DRL60PA4G-05MG
Electromagnetic Brake	Not equipped	Not equipped	Equipped	Not equipped	Equipped
Max. Horizontal Transportable Mass (Fig. A) kg (lb.)	1 (2.2)	2 (4.4)		3 (6.6)	
Max. Vertical Transportable Mass (Fig. B)** ${ }^{*} \mathrm{~kg}$ (lb.)	1.5 (3.3)	5 (11)		15 (33)	
Maximum Speed*2 ${ }^{\text {c }}$ (mm / s (in./s)	24 (0.94)	30 (1.18)		32 (1.26)	
Maximum Acceleration $\mathrm{m} / \mathrm{s}^{2}\left(\mathrm{ft} / \mathrm{s}^{2}\right)$	0.2 (0.66)	0.4 (1.3)		0.26 (0.85)	
Maximum Thrust Force*3 N (lb.)	30 (6.7)	100 (22)		300 (67)	
Maximum At Excitation*4 N (lb.)	30 (6.7)	100 (22)		300 (67)	
Maximum Holding Force At Non-Excitation	0	0	0	0	0
Electromagnetic Brake N (lb.)	-	-	100 (22)	-	300 (67)
Maximum Load Moment $\quad \mathrm{N} \cdot \mathrm{m}$ (oz-in)		$M_{p}: 0.5$ (71) MY: 0.	(35) $\mathrm{M}_{\mathrm{R}}: 0.8$ (113)	$M_{\mathrm{P}}: 0.6$ (85) MY: 0.	(49) $\mathrm{M}_{\mathrm{R}}: 2.2$ (310)
Repetitive Positioning Accuracy mm (in.)	± 0.02 (0.00079)				
Lost Motion mm (in.)	0.1 (0.0039)				
Resolution*5 mm (in.)	0.002 (0.000079)	0.004 (0.00016)		0.008 (0.00031)	
Lead mm (in.)	1 (0.039)	2 (0.079)		4 (0.157)	
Stroke mm (in.)	30 (1.18)	40 (1.57)		50 (1.97)	
Mass [Mass with adjusting knob] kg (lb.)	0.25 (0.55) [0.26 (0.57)]	0.8 (1.76) [0.8 (1.76)]	1.0 (2.2)	1.8 (3.9) [1.85 (4.0)]	2.2 (4.8)
Actuator Dimensions No.	23	24	25	26	27

* 1 When the power is turned off, or output current is turned off (non-excitation state), the actuator loses its thrust force or holding force. As such, it can no longer keep the load in position or withstand an external force.
*2 Use each actuator at or below the following maximum speed in a low-temperature environment [0 to $+10^{\circ} \mathrm{C}\left(+32\right.$ to $\left.\left.+50^{\circ} \mathrm{F}\right)\right]$.
DRL28: $15 \mathrm{~mm} / \mathrm{s}(0.59 \mathrm{in} . / \mathrm{s})$, DRL42: $20 \mathrm{~mm} / \mathrm{s}(0.79 \mathrm{in} . / \mathrm{s})$, DRL60: $24 \mathrm{~mm} / \mathrm{s}(0.94 \mathrm{in} . / \mathrm{s})$
* 3 The maximum thrust force is measured during constant-speed operation in horizontal operation with no load applied to the moving parts (screw shaft and joint). Thrust force varies with load mass and acceleration.
*4 The maximum holding force at excitation is the value when the automatic current cutback function is ON (50% of the rated current).
* 525 resolutions can be set.

Note:

- Use the actuator in conditions where its surface temperature will not exceed $90^{\circ} \mathrm{C}\left(194^{\circ} \mathrm{F}\right)$. The repetitive positioning accuracy is measured at a specified temperature under a specified load.

Specifications

- Electromagnetic Brake Specifications

Type of Brake		Power Off Activated Type		
Power Input Voltage/Current		DRL42: $24 \mathrm{VDC} \pm 5 \% 0.08 \mathrm{~A}$ DRL60: $24 \mathrm{VDC} \pm 5 \% 0.25 \mathrm{~A}$		
Brake Activate/Release Time		Activate Time: 20 ms Release Time: 30 ms		
Time Rating		Continuous		
Driver Specifications				
Driver Model		CRD5103P	CRD5107P	CRD5114P
Power Source	Voltage	$24 \mathrm{VDC} \pm 10 \%$		
	Current	0.7 A	1.4 A	2.5 A
Input Signal	Input Mode	Photocoupler input, Input resistance 220Ω, Input current 10 to 20 mA Photocoupler 0N: +4.5 to 5.25 V , Photocoupler OFF: 0 to 1 V (Voltage between terminals)		
	Pulse Signal (CW Pulse Signal)	Operation command pulse signal (CW direction operation command signal when in 2-pulse input mode), Negative logic pulse input Pulse width: $1 \mu \mathrm{~s}$ minimum, Pulse rise/fall time: $2 \mu \mathrm{~s}$ maximum, Pulse duty 50% maximum Screw shaft moves one step forward when the pulse input is switched from photocoupler ON to OFF. Maximum input pulse frequency: 500 kHz (when the pulse duty is 50%)		
	Rotation Direction Signal (CCW Pulse Signal)	Rotation direction signal (CCW direction operation command pulse signal when in 2-pulse input mode Photocoupler ON: CW, Photocoupler OFF: CCW), Negative logic pulse input [Pulse width: $1 \mu \mathrm{~S}$ minimum, Pulse rise/fall time: $2 \mu \mathrm{~S}$ maximum, Pulse duty 50% maximum Screw shaft moves one step backward when the pulse input is switched from photocoupler ON to OFF. Maximum input pulse frequency: 500 kHz (when the pulse duty is 50%)		
	Resolution Select Signal	Resolution specified in DATA1 when "photocoupler OFF" Resolution specified in DATA2 when "photocoupler ON"		
	All Windings Off Signal	When in the "photocoupler ON" state, the output current to the actuator is cut off. When in the "photocoupler OFF" state, the output current set by the RUN potentiometer is supplied to the actuator.		
	Current Cutback Release Signal	When in the "photocoupler ON" state, the automatic current cutback function at actuator standstill is released. When in the "photocoupler OFF" state, the automatic current cutback function is activated after actuator stops (approximately 100 ms).		
Output Signal	Output Mode	Photocoupler, Open-collector output External use condition: 24 VDC maximum, 10 mA maximum		
	Excitation Timing Signal	The signal is output every time the excitation sequence returns to the initial stage " 0. . (photocoupler ON) When resolution set at 1 : Signal is output every 10 pulses When resolution set at 10 : Signal is output every 100 pulses		
Function		Automatic current cutback, Resolution select, Pulse input mode switch, Smooth drive function, All windings off, Excitation timing		
Cooling Method		Natural Ventilation		
Mass		$0.04 \mathrm{~kg}(0.088 \mathrm{lb}$.		
Dimensions No.		28		

General Specifications

This is the value after rated operation under normal ambient temperature and humidity.

Item		Actuator	Driver
Motor Insulation Class		Class B [$130^{\circ} \mathrm{C}\left(266^{\circ} \mathrm{F}\right)$] [Recognized as class A $105^{\circ} \mathrm{C}\left(221^{\circ} \mathrm{F}\right)$ by UL/CSA Standard]	-
Insulation Resistance		$100 \mathrm{M} \Omega$ or more when 500 VDC megger is applied between the motor windings and case.	-
Dielectric Strength		Sufficient to withstand 0.5 kV at 50 Hz or 60 Hz applied between the motor windings and case for 1 minute. *DRL42P, DRL60M: 1.0 kV , DRL60P: 1.5 kV	-
Operating Environment (In operation)	Ambient Temperature	$0 \sim+40^{\circ} \mathrm{C}\left(+32 \sim+104^{\circ} \mathrm{F}\right)$ (non-freezing)	
	Ambient Humidity	85\% or less (non-condensing)	
	Atmosphere	No corrosive gases, dust, water or oil	

Note:

- Do not measure insulation resistance or perform the dielectric strength test while the actuator and driver are connected.

Positioning Distance - Positioning Time (Reference)

The graphs below represent the characteristics when operated at maximum speed and maximum acceleration.

Dimensions Unit = mm (in.)

- Actuator

Ground Ball Screw, High-Resolution Motor

The actuator comes with a motor lead wire/connector assembly [0.6 m (2 ft.)]. UL Style 3265, AWG24

The actuator comes with a motor lead wire/connector assembly [0.6 m (2 ft.)]. UL Style 3265, AWG22

[^1]UL Style 1430, AWG22

[^2][^3]

- Dimension 4 applies to a configuration with adjusting knob. For models without adjusting knob, the shaft and adjusting knob shown in \square areas should be ignored.

Ground Ball Screw, High-Resolution Motor, Guide Type

		Actuator Model	Mass
6DRL28MB 1 G-03G (Without additional function)	DRL28MB1G-03	$0.25 \mathrm{~kg}(0.55 \mathrm{lb})$.	D 863
DRL28MB 1 G-03NG (With adjusting knob)	DRL28MB1G-03N	$0.26 \mathrm{~kg}(0.57 \mathrm{lb})$.	D864

- The actuator comes with a motor lead wire/connector assembly [$0.6 \mathrm{~m}(2 \mathrm{ft})$.$] . UL Style 3265, AWG24$

	Actuator Model	Mass	DXF
7DRL42MB2G-04G (Without additional function)	DRL42MB2G-04	$0.8 \mathrm{~kg}(1.76 \mathrm{lb})$.	D865
DRL42MB2G-04NG (With adjusting knob)	DRL42MB2G-04N	$0.8 \mathrm{~kg}(1.76 \mathrm{lb})$.	D866

Dimensions 6 and 7 apply to a configuration with adjusting knob. For models without adjusting knob, the shaft and adjusting knob shown in \square areas should be ignored.

		Actuator Model	Mass
8-DRL42MB2G-04MG (With electromagnetic brake)	DRL42MB2G-04M	$1 \mathrm{~kg}(2.2 \mathrm{lb})$.	DXF
	D867		

- The actuator comes with a motor lead wire/connector assembly [$0.6 \mathrm{~m}(2 \mathrm{ft}$.$)]. UL Style 3265, AWG22$

Actuator Model	Mass	DXF
DRL60MB4G-05	$1.8 \mathrm{~kg}(3.9 \mathrm{lb})$.	D868
DRL60MB4G-05N	$1.85 \mathrm{~kg}(4.0 \mathrm{lb})$.	D869

- Dimension 9 applies to a configuration with adjusting knob. For models without adjusting knob, the shaft and adjusting knob shown in \square areas should be ignored.

	Actuator Model	Mass	DXF
10 DRL60MB4G-05MG (With electromagnetic brake)	DRL60MB4G-05M	$2.2 \mathrm{~kg}(4.8 \mathrm{lb})$.	D870

- The actuator comes with a motor lead wire/connector assembly [$0.6 \mathrm{~m}(2 \mathrm{ft}$.$)]. UL Style 3266, AWG22$

- The actuator comes with a motor lead wire/connector assembly [$0.6 \mathrm{~m}(2 \mathrm{ft}$.$)]. UL Style 3265, AWG24$

[^4]

	Actuator Model	Mass	DXF
15 DRL28PA 1-06G (Without additional function)	DRL28PA1-06	$0.18 \mathrm{~kg}(0.39 \mathrm{lb})$.	D872

	Actuator Model	Mass	DXF
16 DRL42PB2-04G (Without additional function)	DRL42PB2-04	$0.6 \mathrm{~kg}(1.32 \mathrm{lb})$.	D361
DRL42PA2-04G (Without additional function)	DRL42PA2-04	$0.6 \mathrm{~kg}(1.32 \mathrm{lb})$.	D361
DRL42PB2-04NG (With adjusting knob)	DRL42PB2-04N	$0.6 \mathrm{~kg}(1.32 \mathrm{lb})$.	D507
DRL42PA2-04NG (With adjusting knob)	DRL42PA2-04N	$0.6 \mathrm{~kg}(1.32 \mathrm{lb})$.	D507

[^5]

| Ground Ball Screw/Rolled Ball Screw, Standard Motor, Guide Type | | | |
| :--- | :--- | :--- | :--- | :--- |
| | Actuator Model | Mass | DXF |
| 222 DRL2OPB 1 G-02G (Without additional function) | DRL20PB1G-02 | $0.14 \mathrm{~kg}(0.3 \mathrm{lb})$. | D522 |
| DRL2OPB 1 G-02NG (With adjusting knob) | DRL20PB1G-02N | $0.15 \mathrm{~kg}(0.33 \mathrm{lb})$. | D523 |

	Actuator Model	Mass	DXF
23 DRL28PB 1 G-03G (Without additional function)	DRL28PB1G-03	$0.25 \mathrm{~kg}(0.55 \mathrm{lb})$.	D456
DRL28PA 1 G-03G (Without additional function)	DRL28PA1G-03	$0.25 \mathrm{~kg}(0.55 \mathrm{lb})$.	D456
DRL28PB 1 G-03NG (With adjusting knob)	DRL28PB1G-03N	$0.26 \mathrm{~kg}(0.57 \mathrm{lb})$.	D513
DRL28PA 1 G-03NG (With adjusting knob)	DRL28PA1G-03N	$0.26 \mathrm{~kg}(0.57 \mathrm{lb})$.	D513

Actuator Model	Mass	DXF
DRL42PB2G-04	$0.8 \mathrm{~kg}(1.76 \mathrm{lb})$.	D364
DRL42PA2G-04	$0.8 \mathrm{~kg}(1.76 \mathrm{lb})$.	D364
DRL42PB2G-04N	$0.8 \mathrm{~kg}(1.76 \mathrm{lb})$.	D514
DRL42PA2G-04N	$0.8 \mathrm{~kg}(1.76 \mathrm{lb})$.	D514

- Dimension 24] applies to a configuration with adjusting knob. For models without adjusting knob, the shaft and adjusting knob shown in \square areas should be ignored.

[^6]
Driver Unit

28 Driver Model: CRD5103P, CRD5107P, CRD5114P
Mass: $0.04 \mathrm{~kg}(0.088 \mathrm{lb}$.)
DXF: B363
$4 \times \phi 3.5$ ($\phi \mathbf{0 . 1 3 8) ~ T h r u ~}$

- Connector Housing (Included) 51103-1200 (MOLEX) 51103-0500 (MOLEX) 51103-0200 (MOLEX)
- Contact (Included)
 50351-8100 (MOLEX)

Note:

- When assembling the connector, use the hand-operated crimp tool for contact 57295-5000 (MOLEX) or the crimped driver lead wire set (sold separately). The crimp tool is not provided with the product. It must be purchased separately.
Driver lead wire set \rightarrow Page 40

Connection and Operation

- Names and Functions of Driver Parts

1 Power Input Display

Color	Function	When Activated
Green	Power Supply Indication	Lights when power is on

(2) Current Adjustment Potentiometer

Indication	Potentiometer Name	Function
RUN	Motor Operating Current Adjustment Potentiometer	For adjusting the operating current of the motor
STOP	Motor Standstill Current Adjustment Potentiometer	For adjusting the standstill current of the motor

3 Function Switch

Indication	Switch Name	Function
1P/2P	Pulse Input Mode Switch	Switches between 1-pulse input mode and 2-pulse input mode
OFF/SD	Smooth Drive Function Switch	Enables or disables the smooth drive function
R2/R1	Resolution Select Switch	Switches the base resolution between R1 and R2

4 Input/Output Signal

Indication	1/0	Pin No.	Signal Name	Function
CN2	Input Signal	1	Pulse Signal (CW Pulse Signal)	Operation command pulse signal (The motor will rotate in the CW direction when in 2-pulse input mode)
		2		
		3	Rotation Direction Signal (CCW Pulse Signal)	Rotation direction signal Photocoupler OFF: CCW, photocoupler ON: CW (The motor will rotate in the CCW direction when in 2-pulse input mode)
		4		
		5	All Windings Off Signal	Turns off the output current to the motor so that the motor shaft can be rotated by external force
		6		
		7	Resolution Select Signal	Switches to the resolution set in DATA1 and DATA2
		8		
		9	Current Cutback Release Signal	Disables the automatic current cutback function
		10		
	Output Signal	11	Excitation Timing Signal	This signal is output when the excitation sequence is in step "0."
		12		

5 Resolution Setting Switch

Indication	Switch Name	Function
DATA1	Resolution Setting Switch	Each switch can be set to the desired resolution from the 16 resolution levels.
DATA2		

DRL20, DRL28 With the high-resolution motor, the resolution is one-half the values specified below.

R1			R2		
Resolution Setting Switch	Microstep/	Resolution 1	Resolution Setting Switch	Microstep/	Resolution 2
DATA1 DATA2	Step 1	mm (in.)	DATA1 DATA2	Step 2	mm (in.)
0	1	0.002 (0.000079)	0	$\times 2.5$	0.005 (0.00020)
1	2	0.001 (0.000039)	1	$\times 1.25$	0.0025 (0.000098)
2	2.5	0.0008 (0.000031)	2	1.6	0.00125 (0.000049)
3	4	0.0005 (0.00002)	3	2	0.001 (0.000039)
4	5	0.0004 (0.000016)	4	3.2	0.000625 (0.000025)
5	8	0.00025 (0.0000098)	5	4	0.0005 (0.000020)
6	10	0.0002 (0.0000079)	6	6.4	0.0003125 (0.000012)
7	20	0.0001 (0.0000039)	7	10	0.0002 (0.0000079)
8	25	0.00008 (0.0000031)	8	12.8	0.00015625 (0.0000062)
9	40	0.00005 (0.000002)	9	20	0.0001 (0.0000039)
A	50	0.00004 (0.0000016)	A	25.6	0.000078125 (0.0000031)
B	80	0.000025 (0.00000098)	B	40	0.00005 (0.0000020)
C	100	0.00002 (0.00000079)	C	50	0.00004 (0.0000016)
D	125	0.000016 (0.00000063)	D	51.2	0.0000390625 (0.0000015)
E	200	0.00001 (0.00000039)	E	100	0.00002 (0.00000079)
F	250	0.000008 (0.00000031)	F	102.4	0.00001953125 (0.00000077)

DRL42 With the high-resolution motor, the resolution is one-half the values specified below.

R1			R2		
Resolution Setting Switch	Microstep/	Resolution 1	Resolution Setting Switch	Microstep/	Resolution 2
DATA1 DATA2	Step 1	mm (in.)	DATA1 DATA2	Step 2	$\mathrm{mm} \text { (in.) }$
0	1	0.004 (0.00016)	0	$\times 2.5$	0.01 (0.00039)
1	2	0.002 (0.000079)	1	$\times 1.25$	0.005 (0.00020)
2	2.5	0.0016 (0.000063)	2	1.6	0.0025 (0.000098)
3	4	0.001 (0.000039)	3	2	0.002 (0.000079)
4	5	0.0008 (0.000031)	4	3.2	0.00125 (0.000049)
5	8	0.0005 (0.00002)	5	4	0.001 (0.000039)
6	10	0.0004 (0.000016)	6	6.4	0.000625 (0.000025)
7	20	0.0002 (0.0000079)	7	10	0.0004 (0.000016)
8	25	0.00016 (0.0000063)	8	12.8	0.0003125 (0.000012)
9	40	0.0001 (0.0000039)	9	20	0.0002 (0.0000079)
A	50	0.00008 (0.0000031)	A	25.6	0.00015625 (0.0000062)
B	80	0.00005 (0.000002)	B	40	0.0001 (0.0000039)
C	100	0.00004 (0.0000016)	C	50	0.00008 (0.0000031)
D	125	0.000032 (0.0000013)	D	51.2	0.000078125 (0.0000031)
E	200	0.00002 (0.00000079)	E	100	0.00004 (0.0000016)
F	250	0.000016 (0.00000063)	F	102.4	0.0000390625 (0.0000015)

DRL60 With the high-resolution motor, the resolution is one-half the values specified below.

R1			R2		
Resolution Setting Switch	Microstep/ Step 1	Resolution 1 mm (in.)	Resolution Setting Switch	Microstep/ Step 2	Resolution 2 mm (in.)
DATA1 DATA2	1	$0.008(0.00031)$	DATA1 DATA2	0	$\times 2.5$
0	2	$0.004(0.00016)$	1	$0.02(0.00079)$	
1	2.5	$0.0032(0.00013)$	2	1.2	$0.01(0.00039)$
2	4	$0.002(0.000079)$	3	2	$0.005(0.00020)$
3	5	$0.0016(0.000063)$	4	3.2	$0.0004(0.00016)$
4	8	$0.001(0.000039)$	5	4	$0.002(0.000098)$
5	10	$0.0008(0.000031)$	6	6.4	$0.00125(0.0000049)$
6	20	$0.0004(0.000016)$	7	10	$0.0008(0.000031)$
7	25	$0.00032(0.000013)$	8	12.8	$0.000625(0.000025)$
8	40	$0.0002(0.0000079)$	9	20	$0.0004(0.000016)$
9	50	$0.00016(0.0000063)$	A	25.6	$0.0003125(0.000012)$
A	80	$0.0001(0.0000039)$	B	40	$0.0002(0.0000079)$
B	100	$0.00008(0.0000031)$	C	50	$0.00016(0.0000063)$
C	125	$0.000064(0.0000025)$	D	51.2	$0.00015625(0.0000062)$
D	200	$0.00004(0.0000016)$	E	100	$0.00008(0.0000031)$
E	250	$0.000032(0.0000013)$	F	102.4	$0.000078125(0.0000031)$
F					

Notes:

- The resolutions are theoretical values.
- The resolution is calculated by dividing the base resolution by the number of microstep.
- The numbers of microsteps that can be specified by the C / S (resolution select) signal are limited to those selected in resolution 1 or resolution 2.
- Do not change the C / S input or resolution select switch while the actuator is operating. It may cause malfunction.
- Connection Diagrams

\diamond Connecting Input Signal

- Keep the input signal Vo between 5 VDC and 24 VDC.

When V_{0} is equal to 5 VDC , the external resistor R_{1} is not necessary. When V_{0} is above
5 VDC , connect R_{1} to keep the current between 10 mA and 20 mA .
Example: When V_{0} is $24 \mathrm{VDC} \quad \mathrm{Rt}: 1.5$ to $2.2 \mathrm{k} \Omega, 0.5 \mathrm{~W}$ or more

- Keep the output signal voltage V_{0} between 5 VDC and 24 VDC, current 10 mA or less. When V_{0} is above 10 mA , connect R_{2} to keep the current 10 mA or less.
\diamond Power Supply
Use a power supply that can supply sufficient input current.
When power supply capacity is insufficient, a decrease in actuator output can cause the following malfunctions:
- Actuator does not move properly at high-speed (insufficient thrust).
- Slow actuator startup and stopping
\diamond Connecting a Power Supply for Electromagnetic Brake
- Connect the red/white lead from the actuator to the +24 VDC terminal on the DC power supply and the black/white lead to the GND terminal. (The electromagnetic brake leads have polarity. The electromagnetic brake will not operate if the leads are connected in reverse polarity.)
- For the electromagnetic brake, use a power supply of $24 \mathrm{VDC} \pm 5 \%, 0.1 \mathrm{~A}$ or above for DRL42, or $24 \mathrm{VDC} \pm 5 \%, 0.3 \mathrm{~A}$ or above for DRL60.
- To connect the electromagnetic brake to the DC power supply, use a shielded cable of AWG24 ($0.2 \mathrm{~mm}^{2}$) or thicker and keep the wiring distance to a minimum. Be sure to use the supplied surge suppressor to protect switch contact and suppress noise.
\diamond Notes on Wiring
- Use twisted-pair wires of AWG24 to AWG22 (0.2 to $0.3 \mathrm{~mm}^{2}$) and 2 m (6.6 ft .) or less in length for the signal lines.
- Note that as the length of the pulse signal line increases, the maximum transmission frequency decreases.
- Use cables of AWG22 ($0.3 \mathrm{~mm}^{2}$) for the power supply lines. When assembling the connector, use the hand-operated crimp tool or the crimped driver lead wire set (sold separately). The crimp tool is not provided with the package. It must be purchased separately.
- Signal lines should be kept at least 2 cm (0.79 in .) away from power lines (power supply lines and actuator lines). Do not wire the signal lines with the power lines in the same duct or bundle them together.
- Extension of the motor leads should be within 10 m (32.8 ft .).
- If noise generated by the wiring and layout of motor cables and/or power cables causes a problem, try shielding the cables or insert ferrite cores.
- Incorrect connection of DC power input will lead to driver damage. Make sure that the polarity is correct before turning the power on.

Description of Input/Output Signals

Indication of Input/Output Signal "ON" "OFF"
Input (Output) "ON" indicates that the current is sent into
the photocoupler (transistor) inside the driver. Input
(Output) "OFF" indicates that the current is not sent into the
photocoupler (transistor) inside the driver

PLS (CW), DIR. (CCW) Input Signal

\diamond Input Circuit and Sample Connection

Notes:

- Keep the input signal voltage Vo between 5 VDC and 24 VDC.
- When V_{0} is equal to 5 VDC , the external resistor R_{1} is not necessary. When V_{0} is above 5 VDC , connect R_{1} to keep the current between 10 mA and 20 mA .
\diamond Pulse Waveform Characteristics

*The shaded area indicates when the photocoupler diode is ON. The actuator moves when the photocoupler state changes from ON to OFF.
- The minimum interval time when changing rotation direction 10μ s is shown as a response time of circuit. This value varies greatly depending on the actuator type and load inertia.

\diamond Pulse Input Mode

- 1-Pulse Input Mode

The 1-pulse input mode uses "Pulse" (PLS) and "Rotation Direction" (DIR.) signals. When the PLS input is switched from ON to OFF while the DIR. input is ON, the screw shaft moves one step forward. When the PLS input is switched from ON to OFF while the DIR. input is OFF, the screw shaft moves one step backward.

Note:

- Factory setting is 1-pulse input.

- 2-Pulse Input Mode

The 2-pulse input mode uses "CW" and "CCW" pulse signals. When the CW input is switched from ON to OFF, the screw shaft moves one step forward. When the CCW input is switched from ON to OFF, the screw shaft moves one step backward.

All Windings Off (A.W.OFF)/Resolution Select (C/S)/ Current Cutback Release (C.D.INH) Input Signal

\diamond Input Circuit and Sample Connection

Note:

- Keep the input signal voltage V_{0} between 5 VDC and 24 VDC . When V_{0} is equal to 5 VDC , the external resistor R_{1} is not necessary. When V_{0} is above 5 VDC, connect R_{1} to keep the current between 10 mA and 20 mA .
\diamond All Windings Off (A.W.OFF) Input Signal
Pin No.(5), (6)
- This signal is used when moving the screw shaft for manual positioning.
- When the A.W.OFF input is turned "ON," the motor current turns off and the actuator loses its holding torque.
- When the A.W.OFF input is turned "OFF," the motor current turns on and the actuator regains its holding torque.

Note:

- When operating the actuator, this switch must be "OFF."
\diamond Resolution Select (C/S) Input Signal Pin No. (7), (8)
- This signal is used to switch between two resolutions set by resolution setting switch (DATA1, DATA2). When the C/S input is in the "photocoupler OFF" state, the resolution set by resolution setting switch DATA1 is selected. When the C/S input is in the "photocoupler ON" state, the resolution set by resolution setting switch DATA2 is selected.
Example: Changing the resolution from 0.0004 mm (0.000016 in .)
(10 microstep/step) to 0.004 mm (0.00016 in .)
(1 microstep/step) (DRL42P)

\diamond Current Cutback Release (C.D.INH) Input Signal Pin No.(9, (10)
- Turning the C.D.INH input "ON" will disable the automatic current cutback function when the actuator is at standstill. Turning the C.D.INH input "OFF" will enable the automatic current cutback function. When the automatic current cutback function is enabled, the output current to the motor will be automatically reduced within approximately 0.1 second after the pulse input is stopped, thus suppressing heat generation from the motor and driver.

Excitation Timing (TIM.) Output Signal

\diamond Output Circuit and Sample Connection

Note:

- Keep the output signal voltage V_{0} between 5 VDC and 24 VDC , current 10 mA or less.

When V_{0} is above 10 mA , connect the external resistor R_{2} as shown in the figure to keep the current 10 mA or less.

This signal is used for precise home detection, etc.
The TIM. output comes on every particular amount (see the chart
below) of the screw shaft movement.

Model	Travel Amount of the Screw Shaft
DRL20, DRL28P	$0.02 \mathrm{~mm}(0.00079 \mathrm{in})$.
DRL42P	$0.04 \mathrm{~mm}(0.0016 \mathrm{in})$.
DRL6OP	$0.08 \mathrm{~mm}(0.0031 \mathrm{in})$.
DRL28M	$0.01 \mathrm{~mm}(0.00039 \mathrm{in})$.
DRL42M	$0.02 \mathrm{~mm}(0.00079 \mathrm{in})$.
DRL60M	$0.04 \mathrm{~mm}(0.0016 \mathrm{in})$.

Movement of the Screw Shaft

- Timing Chart

[^7]
List of Actuator and Driver Combinations

- Ground Ball Screw

Frame Size mm (in.)	Actuator Type	Additional Function	Model	Actuator Model	Driver Model
$\begin{gathered} \square 20 \\ (\square 0.79) \end{gathered}$	Standard Type	None	DRL20PB1-02G	DRL20PB1-02	CRD5103P
		With Adjusting Knob	DRL20PB1-02NG	DRL2OPB1-02N	
	Guide Type	None	DRL20PB1G-02G	DRL20PB1G-02	
		With Adjusting Knob	DRL20PB1G-02NG	DRL20PB1G-02N	
$\begin{gathered} \square 28 \\ (\square 1.10) \end{gathered}$	Standard Type	None	DRL28 \square B1-03G	DRL28 \square B1-03	CRD5107P
			DRL28PB1-06G	DRL28PB1-06	
		With Adjusting Knob	DRL28 \square B1-03NG	DRL28 \square B1-03N	
	Guide Type	None	DRL28 \square B1G-03G	DRL28 \square B1G-03	
		With Adjusting Knob	DRL28 \square B1G-03NG	DRL28 \square B1G-03N	
$\begin{gathered} \square 42 \\ (\square 1.65) \end{gathered}$	Standard Type	None	DRL42 \square B2-04G	DRL42 \square B2-04	
			DRL42PB2-10G	DRL42PB2-10	
		With Electromagnetic Brake	DRL42 \square B2-04MG	DRL42 \square B2-04M	
		With Adjusting Knob	DRL42 \square B2-04NG	DRL42 \square B2-04N	
	Guide Type	None	DRL42 \square B2G-04G	DRL42 \square B2G-04	
		With Electromagnetic Brake	DRL42 \square B2G-04MG	DRL42 \square B2G-04M	
		With Adjusting Knob	DRL42 \square B2G-04NG	DRL42 \square B2G-04N	
$\begin{gathered} \square 60 \\ (\square 2.36) \end{gathered}$	Standard Type	None	DRL60 \square B4-05G	DRL60 \square B4-05	CRD5114P
		None	DRL60PB4-10G	DRL60PB4-10	
		With Electromagnetic Brake	DRL60 \square B-05MG	DRL60 \square B4-05M	
		With Adjusting Knob	DRL60 \square B4-05NG	DRL60 \square B4-05N	
	Guide Type	None	DRL60 \square B4G-05G	DRL60 \square B4G-05	
		With Electromagnetic Brake	DRL60 \square B4G-05MG	DRL60 \square B4G-05M	
		With Adjusting Knob	DRL60 \square B4G-05NG	DRL60 \square B4G-05N	

- Enter \boldsymbol{M} (High-resolution motor) or \mathbf{P} (Standard motor) in the box (\square) within the model name.
- Rolled Ball Screw

Frame Size mm (in.)	Actuator Type	Additional Function	Model	Actuator Model	Driver Model
$\begin{gathered} \square 28 \\ (\square 1.10) \end{gathered}$	Standard Type	None	DRL28PA 1-03G	DRL28PA1-03	CRD5107P
			DRL28PA1-06G	DRL28PAI-06	
		With Adjusting Knob	DRL28PA1-03NG	DRL28PA1-03N	
	Guide Type	None	DRL28PA1G-03G	DRL28PA1G-03	
		With Adjusting Knob	DRL28PA 1G-03NG	DRL28PA1G-03N	
$\begin{gathered} \square 42 \\ (\square 1.65) \end{gathered}$	Standard Type	None	DRL42PA2-04G	DRL42PA2-04	
			DRL42PA2-10G	DRL42PA2-10	
		With Electromagnetic Brake	DRL42PA2-04MG	DRL42PA2-04M	
		With Adjusting Knob	DRL42PA2-04NG	DRL42PA2-04N	
	Guide Type	None	DRL42PA2G-04G	DRL42PA2G-04	
		With Electromagnetic Brake	DRL42PA2G-04MG	DRL42PA2G-04M	
		With Adjusting Knob	DRL42PA2G-04NG	DRL42PA2G-04N	
$\begin{gathered} \square 60 \\ (\square 2.36) \end{gathered}$	Standard Type	None	DRL60PA4-05G	DRL60PA4-05	CRD5114P
			DRL60PA4-10G	DRL60PA4-10	
		With Electromagnetic Brake	DRL60PA4-05MG	DRL60PA4-05M	
		With Adjusting Knob	DRL60PA4-05NG	DRL60PA4-05N	
	Guide Type	None	DRL60PA4G-05G	DRL60PA4G-05	
		With Electromagnetic Brake	DRL60PA4G-05MG	DRL60PA4G-05M	
		With Adjusting Knob	DRL60PA4G-05NG	DRL60PA4G-05N	

Installation

Installing an Actuator

- Installation Method

1. Insert the pilot located on the actuator mounting surface into the metal plate's countersunk hole or through-hole.
2. Install the actuator to a metal plate or a device with mounting screws, using mounting holes of the actuator (1)), or using a mounting plate (2)) (accessories).

- Details of Mounting Hole

Model	Nominal Diameter	Tightening Torque $\mathrm{N} \cdot \mathrm{m}$ (0z-in)	Dimension of Mounting Hole mm (in.)		
			¢M	L0	L (Effective Depth)
DRL20	M2	0.4 (56)	2.3 (0.09)	2 (0.08)	5 (0.2)
DRL28	M2.5	0.6 (85)	3 (0.12)	2 (0.08)	6 (0.24)
DRL42	M4	1.8 (250)	-	-	8 (0.31)
DRL60	M5	5.0 (710)	5.5 (0.22)	4 (0.16)	10 (0.39)

(1) Using mounting holes of an actuator

(The figure shows installation for standard type.)
(2) Using a mounting plate (accessories)

There are three ways of mounting an actuator to device.

O Installation Conditions

Install the actuator in a place satisfying following conditions, or the product may be damaged.

- Inside an enclosure installed indoors (with ventilation holes provided)
- Ambient temperature: 0 to $+40^{\circ} \mathrm{C}\left(+32\right.$ to $\left.+104^{\circ} \mathrm{F}\right)$ (non-freezing)
- Ambient humidity: 85% or less (non-condensing)
- Not exposed to an explosive atmosphere, toxic gases (sulfurized gas, etc.) or liquid
- Not exposed to direct sunlight
- Not exposed to significant amounts of dust or iron powder
- Not exposed to water (rain, water droplets), oil (oil droplets) or other liquid
- Not exposed to air having high salt content
- Not exposed to continuous vibration or excessive impact
- Not subjected to significant electromagnetic noise caused by welding machines, power equipment, etc.
- Not exposed to radioactive materials, magnetic field or vacuum conditions

Anti-Spin Mechanism

The moving part of the standard type actuator does not have an antispin mechanism. Always provide an external anti-spin mechanism, such as a guide for positioning operation. In addition, make sure the load is supported with a linear-guide, etc.

Installing a Load

Standard Type

1. Retract the screw shaft until it stops at the set collar.
DRL20, DRL28

2. Holding the flat section of the screw shaft with a wrench, affix the load with a screw (or nut, in the case of the DRL20 and DRL28).

DRL20, DRL28

DRL42, DRL60

Model	Nominal Diameter of Screw/Nut	Tightening Torque N•m (0z-in)
DRL20	M3 Nut	$0.6(85)$
DRL28	M3 Nut	$0.6(85)$
DRL42	M4 Screw	$1.8(250)$
DRL60	M8 Screw	$5.0(710)$

- Installation Accuracy

When connecting a load, ensure the installation accuracy specified below. Poor installation accuracy may result in a malfunction or shortened service life.

Guide Type

1. Retract the screw shaft until it stops at the set collar.

2. Affix the load with a screw.

- When Using Load-Mounting Holes on the Screw-Shaft Side Install the load using load-mounting holes on the joint and the bolts (not supplied).

Model	Nominal Diameter of Bolt	Tightening Torque $\mathrm{N} \cdot \mathrm{m}(0 z-\mathrm{in})$	Effective Depth $\mathrm{mm}($ in. $)$	L mm (in.)
DRL20	M2	$0.4(56)$	$4(0.16)$	$15(0.59)$
DRL28	M2.5	$0.6(85)$	$5(0.2)$	$16(0.63)$
DRL42	M4	$1.0(142)$	$7.5(0.3)$	$20(0.79)$
DRL60	M5	$2.0(280)$	$11.5(0.45)$	$30(1.18)$

- When Using Load-Mounting Holes on the Linear-Guide Side Install the load using load-mounting holes on the joint and bolts (not supplied). Use screws whose length does not exceed the effective depth in the linear-guide.

Model	Nominal Diameter of Bolt	Tightening Torque $\mathrm{N} \cdot \mathrm{m}(0 z-$ in $)$	Effective Depth mm (in.)	L $\mathrm{mm}($ in. $)$	W (in.)
DRL20	M2	$0.4(56)$	$4(0.16)$	$18(0.71)$	$12(0.47)$
DRL28	M2.5	$0.6(85)$	$3.5(0.14)$	$14(0.55)$	$12(0.47)$
DRL42	M4	$1.0(142)$	$5.5(0.22)$	$24(0.94)$	$19(0.75)$
DRL60	M5	$2.0(280)$	$5.5(0.22)$	$22(0.87)$	$28(1.10)$

Notes:

- When installing a load to the guide type, do not disconnect the ball screw from the joint. This may cause an offset when assembling, resulting in malfunction
Do not apply an overhung load to the joint of the guide type. Also, do not apply a load moment to the joint of the DRL20 and DRL28 guide type. Doing so may result in a malfunction or shortened service life.
- When transporting, remove the load installed to the actuator, or damage may be caused to the equipment.

Repetitive Positioning Accuracy

Take proper precautions in order to ensure observance of the repetitive positioning accuracy requirements provided in the specifications.
(1) Sufficient Rigidity for Peripheral Equipment

- The linear-guide and other mechanical components to be used with the actuator should have rigidity sufficient to withstand the load mass and external forces. Insufficient rigidity may cause deflection, which will prevent the actuator from meeting the requirements defined in the specifications.
- The mounting brackets used for installation of the actuator and the work piece attachment brackets should also have rigidity sufficient to withstand the load mass and external forces. Insufficient rigidity may cause deflection, which will prevent the actuator from meeting the requirements defined in the specifications.
(2) Sensor
- Use a high accuracy home sensor (photo micro sensor etc.). Home positioning accuracy is not included as part of the repetitive positioning accuracy.
(3) Temperature Rise in Actuator
- The actuator may generate a significant amount of heat, depending on the drive conditions. The heat thus generated will cause the internal ball screw to elongate, resulting in displacement as shown in the following figure (reference value). To minimize the temperature dependent effects on the repetitive positioning accuracy, control the input current to the actuator and provide a design that allows for adequate heat ventilation in peripheral equipment.

Conditions
Current cutback: OFF
Running duty: 80\%
Measurement method: Using a laser displacement meter

Precautions in Handling

- Do not loosen the compact actuator's mounting screws or attempt to disassemble the unit.
- The accuracy and other data are measured at a specific temperature and load.
- When transporting the equipment in which the actuator is installed, be sure to remove the load from the screw shaft.

Precautions for Operation

- The surface temperature of the actuator should be kept at $90^{\circ} \mathrm{C}$ $\left(194^{\circ} \mathrm{F}\right)$ or less during operation.
- Although the actuator has a built-in stopper for the ball screw, it may lock up or become damaged due to impact if it hits the stroke end. Do not allow the actuator to hit the stroke end or the equipment.

Accessories (Sold separately)

Mounting Plates ROHS

A dedicated mounting bracket used for installation of the DRL Series actuator.
Each mounting plate comes with mounting screws for fastening the actuator to the plate.

- The customer must provide screws for installing the plate to the equipment.

Material: Iron
Surface treatment: Electroless nickel plating

- Product Line

Model	Applicable Product	Mass g (lb.)
PADRL-20	DRL20	$25(0.055)$
PADRL-28	DRL28	$45(0.099)$
PADRL-42	DRL42	$165(0.36)$
PADRL-60	DRL60	$570(1.25)$

- Dimensions Unit = mm (in.)

PADRL-42

PADRL-28

PADRL-60

Driver Lead Wire Set RoHS

These lead wires are used to connect the driver with the actuator, controller and DC power supply. The driver lead wire set includes three lead wire/ connector assemblies (for actuator, power supply, input/output signal). One end of the lead wire is crimped, therefore crimping is not necessary.

- Product Line

Model	Length $\mathrm{m}(\mathrm{ft})$.
LCSO4SD5	$0.6(2)$

Motor Lead Wire/Connector Assembly RoHS
These lead wires with connectors are available for connection with the products below, eliminating the need for assembling a connector. [A motor lead wire/connector assembly of $0.6 \mathrm{~m}(2 \mathrm{ft}$.) is included with
 the DRL20 and high-resolution motor package.]

Product Line

Model	Applicable Product	Length m (ft.)
LC5N06A	$\begin{gathered} \hline \text { DRL20 } \\ \text { DRL28M } \end{gathered}$	0.6 (2)
LC5N10A		1 (3.3)
LC5N06B	DRL42M	0.6 (2)
LC5N10B		1 (3.3)
LC5N06C	DRL60M	0.6 (2)
LC5N10C		1 (3.3)

This product is manufactured at a plant certified with the international standards ISO $\mathbf{9 0 0 1}$ (for quality assurance) and ISO 14001 (for systems of environmental management)

ORIENTAL MOTOR U.S.A. CORP.

Western Sales and
 Customer Service Center

Tel: (310) 715-3301 Fax: (310) 225-2594
Los Angeles
Tel: (310) 715-3301
San Jose
Tel: (408) 392-9735

Midwest Sales and
 Customer Service Center

Tel: (847) 285-5100 Fax: (847) 843-4121
Chicago
Tel: (847) 285-5100
Dallas
Tel: (214) 432-3386
Toronto
Tel: (905) 502-5333

Eastern Sales and Customer Service Center Tel: (781) 848-2426 Fax: (781) 848-2617 Boston
Tel: (781) 848-2426
Charlotte
Tel: (704) 696-1036
New York
Tel: (973) 359-1100

Technical Support

Tel: (800) 468-3982 / 8:30 A.M. to 5:00 p.M., P.S.T. (M-F)
7:30 A.м. to 5:00 р.м., C.S.T. (M-F)
E-mail: techsupport@orientalmotor.com

Obtain Specifications, Online Training and Purchase Products at: www.orientalmotor.com

[^0]: -The following items are included in each product.
 Actuator, Driver, Driver Connector, Motor Lead Wire/Connector Assembly*1, Operating Manual, Surge Suppressor*2

 * 1 Only for Actuator Frame Size 20 mm (0.79 in .) and High-Resolution Motor
 *2 Only for Electromagnetic Brake Type

[^1]: 2 Brake Leads 600 mm (24 in.) Length

[^2]: The actuator comes with a motor lead wire/connector assembly [0.6 m (2 ft.)]. UL Style 3265, AWG22

[^3]: - Dimensions 1 and 2 apply to a configuration with adjusting knob. For models without adjusting knob, the shaft and adjusting knob shown in \square areas should be ignored.

[^4]: - Dimensions $⿴ 囗 11$ and 12 apply to a configuration with adjusting knob. For models without adjusting knob, the shaft and adjusting knob shown in \square areas should be ignored.

[^5]: - Dimensions 14 and 16 apply to a configuration with adjusting knob. For models without adjusting knob, the shaft and adjusting knob shown in \square areas should be ignored.

[^6]: - Dimension 26 applies to a configuration with adjusting knob. For models without adjusting knob, the shaft and adjusting knob shown in \square areas should be ignored.

[^7]: *1 The minimum switching time to change rotation direction (1-pulse input mode), and switching time to change CW, CCW pulse (2-pulse input mode) $10 \mu \mathrm{~s}$ is shown as a response time of circuit.
 The actuator may need more time.
 *2 Depends on load inertia, load torque, and starting frequency.
 *3 Never input a pulse signal immediately after switching the "All Windings Off" signal to the "photocoupler OFF" state. The actuator may not start.

 * 4 Wait at least 5 seconds before turning on the power again.
 *5 Only for electromagnetic brake type

