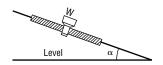
in.

Product Recommendation Information Sheet

in.

sec.

lb.


in.

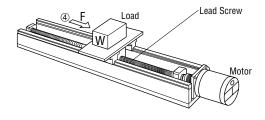
lb.

deg

in./sec.

■ Lead Screw Application Information

l:

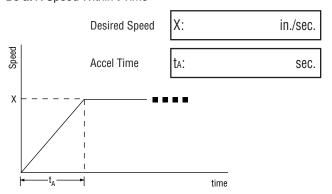

ν:

W:

α:

Move ℓ Distance Within t Time

- ① Move Distance
- ② Time to Make Move
- ③ Maximum Linear Speed
- (4) Push/Pull Force Push Opposes, Pull Helps
- (5) Stopping Accuracy
- 6 Work+Table Weight
- Screw Angle



- ® Distance per Pulse (Step Motor)
- Stop Time
- (10) Screw Diameter
- 11) Screw Length
- (12) Screw Pitch
- ③ Screw Efficiency
- (4) Gear Ratio (If Applicable)

- Δ &:
- t': sec.
- D_B: in.
- L_B: in.
- P_B: in./rev
- η: %
- N: _____:1 ____

■ Alternate Motion Profile

Be at X Speed Within t Time

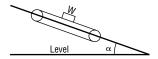
Additional Information or Alternate Profile:

■ Customer Information

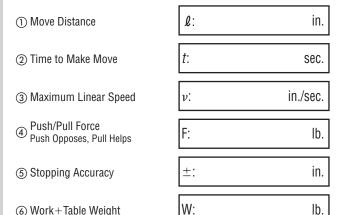
City/State/Zip:

Name/Title: _____

TEL: _____EXT: ____


FAX: _____

Application:


Please fill out as completely as possible and fax toll free: 1-800-309-7999

Product Recommendation Information Sheet

■ Belt and Pulley Application

Move ℓ Distance Within t Time

ť:

- ® Distance per Pulse (Step Motor)
- (9) Stop Time

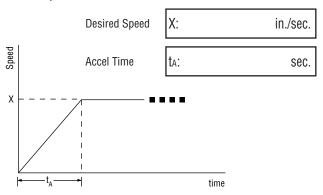
Screw Angle

- (10) Pulley Diameter
- (1) Pulley Weight

$\Delta \mathcal{L}$: in.	Δ ℓ : in.		9
$\Delta \ell$: in.	$\Delta \ell$: in.		
		$\Delta \ell$:	in.

dea l

sec.



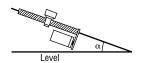
Alternate Motion Profile

Be at X Speed Within t Time

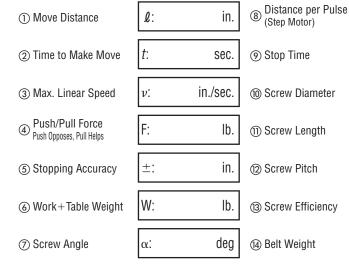
6 Work+Table Weight

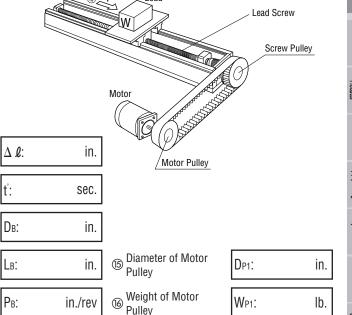
Additional Information or Alternate Profile:

Customer Information


TEL: EXT: Name/Title: Company: _____ Application: City/State/Zip:

in.


in.


Product Recommendation Information Sheet

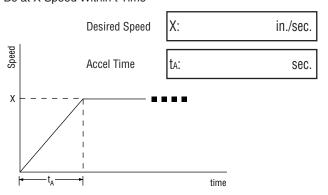
■ Belt/Lead Screw Application Information

Move ℓ Distance Within t Time

Diameter of Screw

Weight of Screw

Pulley


Pulley

D_{P2}:

W_{P2}:

Alternate Motion Profile

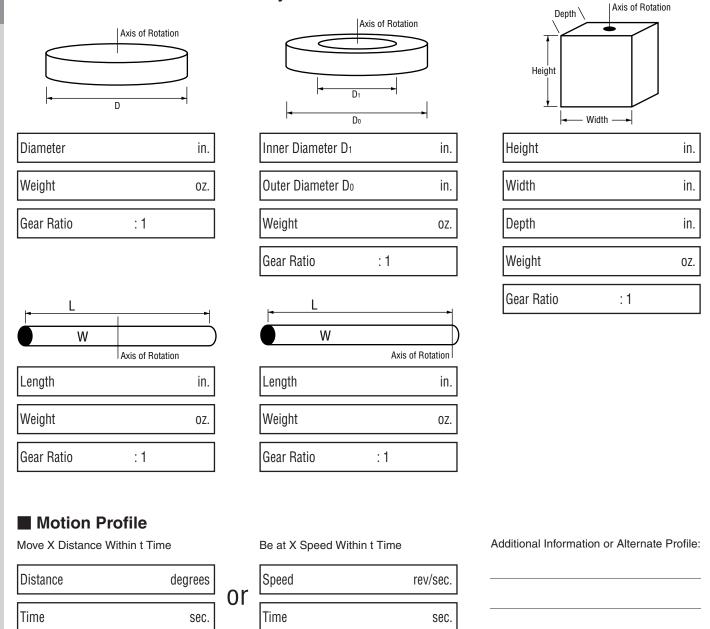
Be at X Speed Within t Time

Additional Information or Alternate Profile:

%

lb.

η:


W_B:

Customer Information

Name/Title:	TEL:	_EXT:
Company:	FAX:	
Address:	Application:	
City/State/Zip:		

Product Recommendation Information Sheet

■ Direct Drive/Gear Driven Rotary Load

Customer Information

Name/Title:	TEL:EXT:
Company:	FAX:
Address:	Application:
City/State/Zip:	

■ Ventilation Cooling, Exhaust

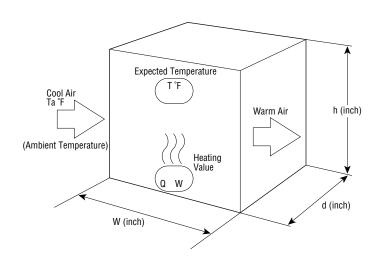
Total heating value and power consumption in equipment

Q:	W
Total input: Pin	W
Total output: Pout	W
Efficiency:	%

Product Recommendation Information Sheet

Equipment Dimensions

Width: W	in.
Height: h	in.
Depth: d	in.
Material, Coating:	
→Emissivity	%


Max. Temperature in Equipment (Expected Temperature)

T:	°F
----	----

* Please include as much information as possible (such as mounting position, inlet and outlet position, etc).

Ambient Temperature (Cool Air)

F

■ Customer Information

Name/Title:	TEL:EXT:
Company:	FAX:
Address:	Application:
City/State/Zip:	

Product Recommendation Information Sheet

■ Ducted Exhaust

Required	Exhaust
Volume	

Q:	in.³/min
Required air flow s	peed
: V	in./sec
Where	

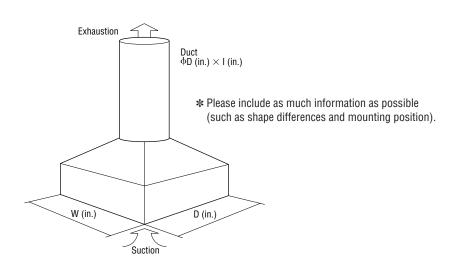
Duct Dimensions

φD:	in. $\times I$:	in.

Filter Characteristics

Air Flow Speed	in./sec
Pressure Loss	in. H ₂ O

Suction Opening Shape



Exhausted Air Temperature

Exhaust Opening Shape

■ Customer Information

Name/Title:	TEL:	EXT:
Company:	FAX:	
Address:	Application:	
City/State/Zip:		

Conversion Charts

$\mathsf{B} = \mathsf{A} \times \mathsf{multiply} \ \mathsf{unit}$

Length

A B	mm	cm	m	in.
mm	1	0.1	0.001	0.0393701
cm	10	1	0.01	0.393701
m	1000	100	1	39.3701
in.	25.4	2.54	0.0254	1

Weight

A B	g	kg	0Z.	lb.
g	1	0.001	0.035274	0.00220462
kg	1000	1	35.274	2.20462
0Z.	28.3495	0.0283495	1	0.0625
lb.	453.592	0.453592	16	1

Inertia

A B	kg-cm ²	g-cm ²	oz-in ²	oz-in-sec ²	lb-in ²	lb-in-sec ²
kg-cm ²	1	10 ³	5.46745	0.0141612	0.341718	8.85076×10 ⁻⁴
g-cm ²	10-3	1	5.46745×10 ⁻³	1.41612×10 ⁻⁵	3.41718×10^{-4}	8.85076×10 ⁻⁷
oz-in ²	0.182899	182.899	1	2.59009×10^{-3}	0.0625	1.61880×10 ⁻⁴
oz-in-sec ²	70.6154	7.06154×10 ⁴	386.088	1	24.1305	0.0625
lb-in ²	2.92630	2.92630×10 ³	16	0.0414414	1	2.59007×10 ⁻³
lb-in-sec ²	1.12985×10 ³	1.12985×10 ⁶	6.17740×10 ³	16	386.0892	1

Torque

A B	N⋅m	N-cm	dyn-cm	kg-cm	g-cm	oz-in	lb-in
N⋅m	1	100	10 ⁷	10.19716	1.019716×10 ⁴	141.6121	8.850759
N-cm	10-2	1	10 ⁵	0.1019716	101.9716	1.416121	0.08850759
dyn-cm	10 ⁻⁷	10 ⁻⁵	1	1.019717×10 ⁻⁶	1.019717×10 ⁻³	1.416121×10^{-5}	8.850759×10^{-7}
kg-cm	9.80665×10 ⁻²	9.80665	9.80665×10 ⁵	1	10 ³	13.887407	0.8679630
g-cm	9.80665×10 ⁻⁵	9.80665×10 ⁻³	980.665	10-3	1	0.013887407	8.679630×10 ⁻⁴
oz-in	7.061541×10 ⁻³	0.7061541	7.061541×10 ⁴	0.07200768	72.00768	1	0.0625
lb-in	0.1129846	11.29846	1.129846×10 ⁶	1.1521228	1.1521228×10 ³	16	1

Air Flow

A B	<i>l</i> /s	ℓ /m	m³/m	m³/h	CFM
<i>l</i> /s	1	60	0.06	3.6	2.11888
ℓ /m	1.67×10 ⁻²	1	10-4	0.06	3.531467×10 ⁻²
m³/m	16.7	10 ³	1	60	35.31467
m³/h	0.278	16.7	1.67×10 ⁻²	1	0.58858
CFM	0.47195	28.31685	2.831685×10 ⁻²	1.69901	1

Static Pressure

A B	Pa	mmH ₂ O	in.H ₂ O
Pa	1	0.10197	4.01463×10 ⁻³
mmH ₂ O	9.80665	1	3.93701×10 ⁻²
in.H ₂ O	249.08891	25.4	1

Temperature

$$(^{\circ}F-32)\times\frac{5}{9}=^{\circ}C$$

[Temperature difference: ${}^{\circ}F \times \frac{5}{9} = {}^{\circ}C$]